ColdFusion Muse: Radder Rad With Cfquery and Cut and Paste

Radder Rad With Cfquery and Cut and Paste
Posted At : January 23, 2006 11:33 PM | Posted By : Mark Kruger
Related Categories: Podcasts, Coldfusion & Databases, Coldfusion Tips and Techniques

When | first heard of RAD my immediate thought was the wonderful folks of Virginia
and the Cumberland Gap - where | met my wife (a nurse from Minnesota, what are the
odds). In the blue green mountains of Appalachia, everyone knows about Rad. It's the
opposite of Blue. If you mix a little yeller into it you get arnge. When | started studying
IT and Technology. It didn't take me long to learn that RAD stood for "Rapid
Application Development”. Now if you've been using Coldfusion for any length of time
you will know that "RAD" is a word often used in to describe the usability and
accessibility of the language. Here one reason why....

Copy and Pasteability

Rather than force a user to wrangle with string concatenation, Coldfusion leverages it's
status as a "tag-based” language to make it conceptually easier. In other words, | have
an easier time picking out certain things of note and seeing them apart from the code.
Nowhere is this more evident than when working with queries. Using CF your can cut
and paste human readable queries with less grunt work than virtually any other
language. Let's say you have the following query that you have worked out in your
query analyzer:

SELECT s

FROM Users

WHERE username = 'sally'
AND password = 'theCamel'

If | where to move this query to ASP and replace the 2 "where" clause items with
variables | would end up with this:

<%

conn = server.CreateObject ("ADODB.Connection™)

conn.Open "*string with username and password*"

sql = "select * from users where " &
"username = '" & request ("username") & "' AND Password='" & _
request ("password") & "'

qgry = conn.execute (sqgl)

%>

Note that the end result bears little resemblance my initial query (so nicely formatted
in Query analyzer). It's possible that | cut and pasted from Query Analyzer to begin
with, but | had to seriously mangle the string to add the concatenation. You see, in ASP
(and most other languages) you must concatenate a long string, taking care with the
single quotes, and pass it along to a database object. The more difficult the query, the
longer the string, the more confusing it becomes.

Now here's the same code in Coldfusion:

<cfquery name="gry" datasource="#mydsn#">
select * from users
where username = '#form.username#'
and password = '#form.password#'
</cfquery>

http://mkruger.cfwebtools.com/enclosures/radderRad.mp3

ColdFusion Muse: Radder Rad With Cfquery and Cut and Paste

It should be noted that under the hood Coldfusion is parsing through the string that is
held between the tags and putting it into an SQL Prepare statement and executing it
using JDBC. So there is little functional difference here. Both snippets return a result
set. But the first snippet simply take longer to write and it will be much more difficult
to change and maintain.

This problem is even more pronounced when conditions are introduced into the string.
Let's say you have a search form with 2 free text boxes - one for "search string” and the
other for "type”. You want to always search against the first box, but you want the
second box to be "optional”. That is, you only want to include it in the search if
someone actually enters something in the second box. In Coldfusion:

<cfquery name="qgry" datasource="#mydsn#">
select * from news
WHERE title LIKE 'S$#form.searchString#%'
<!--- check the type --->
<cfif len(trim(form.type))>
AND type LIKE '$form.type#%'

</cfif>

</cfquery>

So the conditional goes right into the query - easy. How about ASP?

<%

conn = server.CreateObject ("ADODB.Connection")
conn.Open "*string with username and password*"
sql = "select * from news where " &

"title LIKE = '$" & request ("searchString") & "%'
if request ("type") <> "" then

sgql = sgl & " Type LIKE '$" & request("type") & "%' "
end if

qry = conn.execute (sql)
%>

In my view this is just harder to read, and harder to copy back into QA and re-work.
ASP is just one example. We could easily produce examples in just about every
language. This easy encapsulation of Database code is one of the most precious and
valued aspects of Coldfusion - and why it retains its popularity among programmers
creating data management utilities on the intranet.

In fact, this "readability” results in a tremendous advantage for database code -
namely, that it need not be developed "within" the Coldfusion script. | typically
develop database code in Query Analyzer (when working with MS SQL). The code is
immediately portable to Coldfusion. | don't have to parse it into a long string or
encapsulate it into a stored procedure (unless other requirements demand it). Usually,
all I have to do is "variableize" or "conditionalize” the where clause using
CFQueryparam (and a handy snippet in Homesite or CF Eclipse or DW). | can copy and
paste from my Coldfusion code into my analyzer and retain most of it's form - allowing
me to run it and change it with little editing. | can then copy back to Coldfusion from
query analyzer and re-variableize my where clause.

Coldfusion Users Know More SQL

| used to think that Coldfusion made database work too easy - resulting in CF coders
who were not knowledgeable enough about SQL. | still believe that learning advance
SQL is the single most important thing you can do to increase your skill set if you are

ColdFusion Muse: Radder Rad With Cfquery and Cut and Paste

already an intermediate Coldfusion programmer. But now that I've worked with a lot
of other applications written in other languages I've come to the conclusion that
Coldfusion greatly assists the CF coder become a better SQL programmer by making
SQL as accessible as CFML itself. | think that CF coders can write better SQL code
because they can focus on SQL as the locus of their efforts - rather than on the syntax
of the parent coding language. Coldfusion programmers don't have to struggle over
UNIONs and JOINs like the ASP or PHP programmer because the CFQUERY tag functions
as a visual unifier - a bridge between the query tool and the web script.

