
A Whole Heaping Helping of Normal
Posted At : April 27, 2012 5:49 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Optimization

When I'm called into a data center or large application to look at a ColdFusion
performance problem I often find myself in a "war room" with highly skilled technicians
and admins who may or may not know much about the JVM runtime. One of the things
that require experience is knowing what normal memory patterns look like for a
typical production heap. Windows admins will often go directly to the task manager or
resource monitor to examine memory usage. If they are uninitiated the first thing they
say is "Wow... Jrun is using a lot of memory." This often doesn't sit right to them,
particularly if the site is idle. So this post is to help those windows folks (and Linux as
well) to an understanding of what normal heap activity looks like.

Min and Max values and the Windows Task Manager

Let's start with those annoying settings in the jvm.config file - Xmx and -Xms. Folks
tuning a production heap often set these 2 settings to the same value. For example, if
they want a 9 Gig heap they set both of them to (1024 * 9) = 9216m like so:

java.args= -server -Xmx9216m -Xms9216m

Since we have a minimum of 9216 what should we see in the task manager? Something
very close to that right? Not exactly. Here's a default task manager view of a 9 Gig
heap.

Well that doesn't seem right at all does it? Shouldn't memory show something closer to
9 Gigs? I'm only seeing 5 or so here. Ah... the "working set" is really the memory that
your JVM is "addressing" - hanging on to at the moment. Fortunately you can customize
your task manager to show more interesting things. To get to the amount of memory
allocated you actually need to look at the "commit size". In task manager go to
view-->select columns and choose "commit size" (I also add handles and threads to my
customized TM view). Now we are getting somewhere.

ColdFusion Muse: A Whole Heaping Helping of Normal

But wait a minute... this looks like over 9.5 gigs. Where did my extra memory come
from? Actually the commit size is going to represent the Heap minimum (-Xms) plus the
value of your PermSize (where all the core classes are stored and utilized) plus a
couple hundred megs extra I've never figured out. So a given 9 Gig heap has a private
working set of between 500megs and 9 gigs and a stable "commit" size of around 9.5
gigs. So far so good.

Memory Growth

Here's the Muse rule of thumb Window's folks. After taking stock of the commit size the
task manager can tell you very little else about JVM memory. Windows admins can be a
stubborn lot. One of the things they sometimes do is to watch that private working set
and try to correlate its growth or reduction against activity on the server. This is a
fool's errand.

The private set has a rough relationship to the heap with regard to growth - but little
to no correlation with regard to size that I've been able to find. For example, using the
ColdFusion server monitor I found that the amount of memory "in use" by this 9 Gig
heap is 2.8 Gigs, yet windows shows 5.3 Gigs in the "private working set". If activity
were to cause the heap usage to grow to 3 Gigs in the CF monitor you would likely see
a corresponding increase (or at least change) in the private working set. But it will
never match the JVM used counter except by happenstance. Indeed you will drive
yourself crazy trying to match general heap growth to specific activity using the Task
Manager. It is simply too crude of a tool and is once removed from the internals of the
JVM. The JVM runtime plays its own game with memory most of the time. A typical
memory chart on an idle server may still show memory growth. Things like the proxy
scheduler, client purging, monitoring etc. - all produce some modest activity on the
heap. That activity will result in heap growth until a GC runs to recover the memory.
And the JVM feels no particular urgency to run a GC unless configured specifically to
do so at intervals. So an idle heap might grow slowly for 10, 15, 20 minutes under zero
load, then drop back to "normal". This behavior can look abnormal - like a leak - if you
are not up to speed on what to look for.

Memory Leaks

To be sure you can get memory leaks in Java as well as any language. How do you know
if your memory is leaking?

Out of Memory Errors - these do not always mean a "leak". They could also mean
you are resource constrained and need a larger heap or bigger hardware or
whatever. Still, a leak will eventually cause an Out of Memory error - otherwise it

ColdFusion Muse: A Whole Heaping Helping of Normal

whatever. Still, a leak will eventually cause an Out of Memory error - otherwise it
be just an interesting memory pattern not a leak.
Recovery never "bottoms" - when GC's run they must eventually recover memory
below some previous floor. If recovery always hits above a previous floor, then
eventually you are recovering smaller and smaller spaces at the top of the heap
until it locks up with an Out of Memory error.

So the only way to be sure you have a "leak" and not just some interesting nuance of
the JVM is to watch the GC patterns over time to see if recovery deals with smaller
and smaller spaces. If it does and finally hits an out of memory error then you probably
do indeed have a leak.

My point is that simply seeing increasing memory and scratching your head about it
because not much is going on is not a memory leak. It may be a completely normal
behavior of the JVM - and usually is. If someone tells you there is a memory leak your
first response should be skepticism. They occur to be certain - and they can be devilish
to fix. But there are dozens of things more likely than a "leak" to check before you go
down that road. As a rule I don't go looking for leaks until I've proven I have one to my
own satisfaction (meaning repeatable tests leaving memory that does not respond to
full GC operations).

Normal JVM Heap usage on an Idle Pristine Server

Finally, here are a couple of screen shots to demonstrate a "normal" heap usage. This
particular heap has been running with zero activity (other than the CF monitor) for a
bit over half an hour. If left to build the chart would eventually have a quite regular
"saw tooth" pattern. This "saw tooth" pattern in variation is what you are looking for in
any "normal" JVM.

The thing to note here is that even under zero usage some memory increase building
and recovery is completely normal.

Normal JVM Heap Usage on a Busy Production Server

Finally, here is a heap on a busy production server. The gaps between the teeth are
shorter but that saw-tooth pattern is definitely there. As a rule larger teeth (larger,
steeper drops) are generated by "full" (tenured) GC operations while smaller drops with
small amount of memory recovered are the result of "new" GC operations.

ColdFusion Muse: A Whole Heaping Helping of Normal

If you want to learn more about heap and memory usage my advice would be to
eschew the windows tools and pick up fusion reactor or use the CF Monitor. Examine
machines you know about to get an eye - a feel for what is "normal". The more you see
the better you will be at spotting aberrations.

When they train the secret service agents on how to spot counterfeits (when they can
pry them off of South American hookers that is) they spend little time pouring over
fake money. Instead they train them to know and understand minute details of the real
money. Knowing normal helps them spot counterfeit money - so they can count out
eight $100 bills with confidence knowing its legal tender.... or possibly 3 tens in a
pinch.

The same goes for the Java heap. Take the time to examine well running servers and
get an eye for how memory is being managed on them. If you can, check out small
heaps, large heaps, multi-instance etc. The more "normal" you have seen the better
you will be at seeing unusual nuances.

I would add that there are dozens of other 3rd party Java tools that inspect the heap
for you and can give you clues about how your memory is being used. My only caution
would be to wait until you have some experience before jumping to conclusions. Some
of the tools out there will flood you with information on object size new partitions and
survivor ratios. I'm a big believer in getting all the information, but sometimes these
things are side trails that obscure the big picture. Improving performance is often
simply a matter of writing better code, making good use of your DB platform and giving
your JVM enough heap and the right arguments to handle itself well.

Now I know my loving readers will happily jump in and give me their take on a post
like this. As always I welcome useful comments and criticisms.

ColdFusion Muse: A Whole Heaping Helping of Normal

