ColdFusion Muse: Passing an Array to a.NET Webservice

Passing an Array to a .NET Webservice
Posted At : April 27, 2009 11:09 PM | Posted By : Mark Kruger
Related Categories: ColdFusion

Here's a problem that will leave you scratching your head should you ever run into it.
Consider a simple .NET web service that requires an "array of strings”. The goal was to
make use of a web service API published by . | wanted a programmatic
way of adding email aliases - groups of emails that function under a single address.
The web service methods provided by the smarter mail APl could not be simpler. Each
request requires a username, password, domain and then additional stuff to make it
work. For example, the "GetAlias()" function allowed me to pass in a domain and alias
and get a list of emails already associated with that alias.

The problem came when it was time to add or update an alias. The argument for
"addresses” to pass to the .NET service looked like "an array of strings” (that's how the
help docs referred to is as well). The node in the XML looked pretty simple:

<AddAlias xmlns="http://tempuri.org/">
<AuthUserName>string</AuthUserName>
<AuthPassword>string</AuthPassword>
<DomainName>string</DomainName>
<AliasName>string</AliasName>
<Addresses>

<string>string</string>
<string>string</string>

</Addresses>

</AddAlias>

Now | can think of several ways to create an array of strings in ColdFusion so | started
giving it the old college try. Unfortunately each attempt ended in failure. | could not
figure out how to get a data type instantiated in CF to match the data type that .NET
expected. | ended up experimenting with several different approaches to the array
syntax.

After trying the straight up CF array syntax (as in x = arrayNew(1)), | tried JavaCasting
to an array (seems obvious right?).

<Cfscript>
Addresses = Javacast("string[]", ArrayOfAddresses);
</cfscript>

That didn't work so | tried directly instantiating a Java "arrayList” (as in
createobject("java“,"java.util.ArrayList")), but that also yielded no results. | tried the
“toArray()" member of the array class (based on this excellent post from Christian

Cantrell on) but that was also a bust. | tried
different ways of initing an array (like the bracket syntax). No matter what | tried | got
the dreaded "argument type mismatch” error. Finally | stumbled onto on the

Smarter Tools forum. A user with the same problem that | had created this function:

<cfscript>

function SmartArray(lItems,delim) {
var ArrayContainer=StructNew () ;
ArrayContainer.string=ListToArray(lItems,delim);

return ArrayContainer;

http://www.smartertools.com
http://weblogs.macromedia.com/cantrell/archives/2003/06/passing_coldfus.html
http://www.smartertools.com/forums/p/18071/46106.aspx

ColdFusion Muse: Passing an Array to a.NET Webservice

}
</cfscript>

What gives? His little function definitely solved my problem - but why? Looking
carefully at the XML you can see why. The code is not calling for an array of string. It
is calling for a member named "string” containing an array. If "addresses” was supposed
to be an array of strings the node would look something like:

<Addresses>string</Addresses>
<Addresses>string</Addresses>
<Addresses>string</Addresses>

As it is written the array in question belongs not to "addresses” but to
"addresses.string”. My problem was getting hung up on the word "string” that was being
used to label the node. | simply took it to be a type without recognizing it as an actual
member of "addresses”. All | needed was a wrapper “string” containing an array. Once |
used this function | was able to work out the details of my Smarter Mail Web service
and add a list of email addresses to an alias using code like this:

<cfscript>

addresses = smartArray("emaill@example.com,email?2@example.com",",");
mailServer.addAlias (AuthUsername=au, AuthPassword=pw, DomainName=domain,
AliasName=aliasName, addresses=addresses);
</cfscript>

To summarize, if your .NET service calls for an array of something, look carefully at the
syntax and figure out the nature of the way the data is organized. Analyzing the XML
carefully will give you a head start and keep you from puzzling till your puzzler is sore.

