ColdFusion Muse: Cfobjectcache Docs Wrong? Inconceivable!

Cfobjectcache Docs Wrong? Inconceivable!
Posted At : February 17, 2010 6:51 PM | Posted By : Mark Kruger
Related Categories: ColdFusion

In this post I'm going to claim that part of the official documentation is wrong.
Whenever | do this sort of thing | always think of the movie "The Princess Bride" when
Enigo says "You kep using that word... | do na think it means what you think it means".
Be that as it may, | think the docs in this case are ambiguous at best and at worse
downright misleading. There's an obscure little tag called cfobjectcache that's
available in ColdFusion server. Although it was a part of ColdFusion 5, | first became
aware of this tag in Cf 8. You can find Adobe's documentation for the tag . If you
read the documentation (always a good idea - the muse is great but he doesn't write
about everything) you may get the wrong idea about this tag. At the top of the
documentation it says (and | quote), "Description: Flushes query cache”. Well that's
straightforward enough isn't it? This tag is designed to flush the cache of queries on the
server. It's easy to use:

<cfobjectcache action="clear"/>

...poof - your query cache is back to square one. Well not so fast my friend...
The catch

Ah... but a closer look at the attributes section of the live doc shows this explanation
for the action of "clear”. It states "clear: clears queries from the cache in the
Application scope.” This has led many folks to believe that cfobjectcache works at the
application level. In other words, you can add it to code underneath a CFAPPLICATION
tag or an Application.cfc file and it will surgically clear out any cached queries that
“live" inside of that application.

So which is it? Does the tag clear the "global” query cache or just queries living in your
application scope? A quick test will help us demonstrate.

The Setup

Here's a simple experiment. On your dev server create 2 folders. Put a cfm file in each
of them. We'll call them App1 and App2. Here's the code for App1

<!--- create an application --->
<cfapplication name="appl">
<!--- cache a query - 30 minutes should do --->
<cfquery name="applQry" datasource="#mydsn#"
cachedwithin="#createTimespan (0,0,30,0)#">
SELECT TOP 10 *
FROM USERS
</cfquery>

App2 is going to be nearly identical. It will look like this:

<!--- create an application --->

<cfapplication name="app2">
<!--- cache a query - 30 minutes should do --->
<cfquery name="app2Qry" datasource="#mydsn#"
cachedwithin="#createTimespan (0,0,30,0)#">
SELECT TOP 10 *
FROM USERS

http://livedocs.adobe.com/coldfusion/8/htmldocs/help.html?content=Tags_m-o_15.html

ColdFusion Muse: Cfobjectcache Docs Wrong? Inconceivable!

I</chuery> I

Note the only difference is that | have changed the name of the application and the
name of the query - that's it. Now go and run each snippet of code a couple of times.
In the debug it will clearly indicate "cached query".

So you have created 2 cached queries in 2 separate applications - so far so good. Let's
take a look at server monitor. Don't worry we'll keep it simple. Open the "statistics” tab
in server monitor, then the database menu (on the left) and finally open the query
cache status. You should see a cached query count of 2 if you are running on a dev
server with nothing else going on (like on your local desktop for example).

DATABASE > Query Cache Status

Displays guery cache infermabon. A highes guery cachs hil ralio indscales belled parfaimance, becauss more guetiss ane beang relrieved

ey Cache Hl B9
| Cached Cery Courd 2 | 41 Datm -

18

junn) e payses
'

If you have memory tracking enabled - which you should never ever ever have enabled
by default on production (Ever!) you may also see a cache size of a few k. Just keep
that screen up and notice that you have 2 queries "in the cache”. It's time to
experiment with our cfobjectcache tag. Open your page with the app1 query and
comment out the cfquery tag. Then add this:

<cfobjectcache action="clear"/>

According to one part of the docs (the attribute description) this should have the
effect of eliminating app1Qry and it should leave the app2Qry in the cache. Why?
Because clearly app1Qry is part of the app1 application and the app2Qry is part of the
app2 application. Running the our cfobjectcache clear code from inside the app1
application ought to clear out one query and leave the other - right? Take a look at the
server monitor. Instead of showing one query left like we suppose it how shows zero
queries in the cache. All queries in the query cache (which is clearly a server level
convention) are gone.

Displays gquarny cache information. A higher query cache hit ratio ndicates betier perfformance, becavse more queres are being retriewed

Cuiery Cache Hil Ralia | 0%
B Cached Chaery Cownt 0 | A Data ¥

10

3 disnp peyaes

16:28 16327 16838 1629 18:30

ColdFusion Muse: Cfobjectcache Docs Wrong? Inconceivable!

Other versions of this experiment yield the same result. Executing the tag inside or
outside of an application has no effect. No matter the conditions the tag will always
clear the entire query cache at the server level.

Why Worry

Why is this important? If you are on a server with other sites and you choose to use this
tag because it has been left enabled (and it often is left enabled because it is so
obscure) you are eliminating the cached queries of every site on the server. On a busy
shared server this could result in a serious degradation of service as well as sudden
unexplained DB activity as sites churn away re-caching queries. In fact, on newer 64
bit servers with very large heap sizes query caching is a more viable option, but that
also means that folks might be loading up a lot more data into the cache than in
previous memory constrained 32 bit versions. So If you use the tag it should probably
only be on a server which you control and not on a shared server. If you are a server
admin who enables and uses sandboxes for shared servers you should probably disable
this tag for virtually all users on the server.

Still, it is useful to have an easy way to quash the entire query cache on a dedicated
server. Like most things in life, you simply need to handle with care.

