ColdFusion Muse: Sessions and Cookies and Bots (oh my)

Sessions and Cookies and Bots (oh my)
Posted At : November 28, 2005 6:33 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Optimization, Podcasts, Coldfusion Tips and Techniques

Would you like to know how to create your own memory leak using the design of the
Coldfusion Server to do it? Here's one way. Let's say you have a site that sells products
from Narnia. It has a root folder that display your products and prices. You've done a
great job of creating friendly links for browsing your Narnia products. You have stuffed
Aslan lions both friendly and fearsome, White witch figurines, fauns, nyads, dryads, a
toy lamppost and even a wardrobe for sale. Let's say (for the sake of argument) that
you have 50 links to Narnia products just on your home page. If a user chooses to buy
one of your products he or she clicks on "add to cart”. At this point the user is taken
into the "/shop/" folder to the page at "www.Nnarniaproducts.com/shop/cart.cfm”. So
far so good. This is how many online stores are organized and it's just peachy. But let's
look under the hood shall we.

Sharing the Application.cfm (or Application.cfc) page

Where you place your cfapplication tag and how you configure it's attributes is very
important. For example, it might make sense to put an application.cfm page in root
because you have variables that are instantiated and shared between the shopping cart
and the main browse pages. So it might make sense to simply include them in one big
application. with a single "cfapplication” tag like so...

<cfapplication
name="narnia products"

sessionmanagement="Yes"

setclientcookies="yes"....>

You will note that we have enabled session management. Now the truth is, we don't
need session management until the user puts something in his or her shopping cart, but
since we are sharing the application.cfm page we go ahead and enable it here. When
the user adds that big stuffed Aslan to his shopping cart and we need a session
variable, we will be able to create one with no problem.

What happens when we do it this way? When a user first arrives on the home page 2
variables - CFID and CFTOKEN - are created. They are placed in memory under the
"application” and a cookie is sent to the browser. The browser's responsibility is to
return the cookie with each additional request. Subsequent requests "see” the cfid and
cftoken, and match them with the data stored in memory. If there are any session
variables, they are stored in memory using the CFID and CFTOKEN as a key to figure
out which session variables belong to which user. The application knows to set a new
CFID and CFTOKEN when it examines the request and finds no existing CFID and
CFTOKEN.

These 2 variables are the basis for the "session”. The server hangs on to these variables
in memory until the session times out or the server restarts. You can easily test this by
outputting the CFID and CFTOKEN on a test page. Output them several times and you
will see they remain the same. Then delete all cookies and refresh the page. The
values will change. Consider that if you crafted requests devoid of any cookies or url
variables (when they are used for sessions) you would, in effect, be creating a new

http://mkruger.cfwebtools.com/enclosures/sessions_and_bots2.mp3

ColdFusion Muse: Sessions and Cookies and Bots (oh my)

session with each request.

<cfoutput>
#cookie.cfid#

#cookie.cftoken#
</cfoutput>

Bots and the Train they Came In On

Actually, this is exactly how a bot works. An indexing bot retrieves your home page.
The CF server sets a CFID and CFTOKEN in memory and sends back the cookie header
with the response. The bot takes stock of your home page and parses out all the links.
It then goes out and retrieves each link and indexes the content - exactly what you
want it to do. But because a bot, by design, ignores cookie headers, it does not send
back the CFID and CFTOKEN with each subsequent request. In effect, every request of
the bot is creating a new session. In the case of our Narnia product site - an unneeded
session. If you have thousands of products and you want your site to be heavily indexed
this can create a resource issue for you. An aggressive bot on a large site can create
hundreds and even thousands of phantom sessions that take up space in memory until
they expire.

Solutions

Be careful how you configure sessions and the application.cfm page. Using a single
Application.cfm or Appliciation.cfc page might not be the best solution for you. You
might want to configure 2 of them - one with and one without sessions. In most cases,
a "session aware” shopping cart can have it's own cfapplication tag while a "public
facing” area can have a separate one. You can still use a shared "include” file to
populate shared variables and functions - giving you a reasonable level of modularity.
Using a robots.txt file to exclude the shopping cart area is also a good idea.

Please note, that while I'm explaining using the CFID and CFTOKEN, there is an
alternate variable called "JSESSIONID" that can be used. You can enable JSESSIONID in
the Coldfusion admin. jsessionid is a 1 way Hash and it takes the place of both CFID
and CFTOKEN variable. In most cases | recommend that you use jsessionid - especially
for a new project. However, there are many legacy Coldfusion applications out there
that depend on the existence of the CFID and CFTOKEN variable - so you have to take
it on a case by case basis.

