
Script Injection Attack: Smoking Gun?
Posted At : September 18, 2009 1:07 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Security

Many of you may know there is a web server attack going on in the wild that involves
appending a JS script to all the htm, php, cfm, js, jsp files found on a server. If you
are unfamiliar with this attack see some of my previous posts like this one for more of
an explanation. While I have found the script that actually does this dirty deed and I
have combated this issue on numerous servers by now, I have never really been
confident that I have discovered where the attack actually begins (i.e. how this file
gets on the server to begin with). Yesterday I was made aware of a technique that
might be the smoking gun. It has been tested by some folks I trust and I want to give a
full explanation here to assist all those Muse readers who battle the bad guys at the
server level.

If you are a technician or network operations professional who is trying to scan your
way out of this attack, I'm afraid you are probably out of luck (but keep reading
anyway). This attack specifically targets application code - not just CF but ASP, JSP,
PHP and any others. All of them can be subject to this problem because it has to do
with insecure coding, not specific platform vulnerabilities. I would add that if you find
your code vulnerable don't feel too bad. This exploit is clever enough to get by code
that seems secure as we shall see. If you are a web developer of any stripe you should
definitely read this post. The examples are in ColdFusion, but you will be able to
extrapolate for your own language or technology pretty easily.

Uploading User Files

Allowing users to upload files is a pretty typical feature on the web these days - and
not just with ColdFusion. The ability to add content or resources in the form of a file is
a common feature of forums, email applications, galleries, video sites, document
sharing sites et al. Naturally it is very important that you are able to secure your server
from malicious files uploaded using the tools you provides. In ColdFusion you can use
the "accept" attribute to specify MIME types to accept. The browser determines the
MIME type on upload using the file extension. Not only is this useless from a security
standpoint, developers have found that this is not one hundred percent reliable
(depending as it does on the client) so they have taken to writing custom code to filter
out pernicious attempts to infiltrate the server. Consider this code for example:

<!--- allow these extensions --->
<cfset extlist = 'jpg,gif,doc,xls,pdf'/>

<!--- Place the file --->
<cffile action="UPLOAD"
 filefield="myFile"
 destination="#expandpath('../files')#">

<!--- Delete files that don't match extensions --->
<cfif NOT listfind(extlist,listlast(file.serverfile,'.'))>
 <cffile action="DELETE" file="#expandpath('../files')#/#file.serverfile#">
</cfif>

This code checks the extension of the file and excludes any files that don't match a list
of allowed extensions. So, for example, if a user wanted to upload a file with a .cfm

ColdFusion Muse: Script Injection Attack: Smoking Gun?

http://www.coldfusionmuse.com/index.cfm/2009/4/16/iframe.insertion.hack

extension and run it on your server they would be unable to do so - right? That makes
this code safe... or does it?

There are a couple of reasons why this code may not be safe - not the least of which is
that code could be uploaded with a spurious extension and used in some other way.
For example, in my post on the Iframe injection hack a user was able to upload a file
using ASP that seemed to be a GIF file, but in actuality was a CDX file which an IIS
server in its "default configuration" (and no server should ever be left in it's default
configuration!) is set up to handle using the asp.dll. In that case a malicious user was
able to fool the upload script into thinking it's handling a gif when in actuality it is
handling and executing malicious code. But that is not the exploit we are discussing
here. In fact the exploit we are discussing here is even more devious and clever.

Step 1: Prepare the File

The way this works is pretty simple. A malicious user prepares a CFM script that does
something naughty like emails your directory structure to himself or downloads
additional files to the server via cfftp. He calls his script something random that is not
likely to be on your server. Let us suppose he names his .cfm file "bob.cfm". Having his
ignoble file in hand he must now figure out how to get it on your server where it can
be executed.

Step 2: Innocuous Probe

Our hacker registers for an account on that site you built for mole lovers
(Ilovemoles.com) and pokes around a bit (or should I say "digs" around a bit). Part of
your site allows you to upload pictures of moles that you think are cute or unique. He
uploads a photograph, and then views it his browser. He takes note that your code is
serving the picture from www.ilovemoles.com/userphotos/. That path becomes his
target directory. So his first attempt is to simply upload something other than a photo.
He tries uploading Bob.cfm. Naturally, because you are not just a mole lover but also a
good programmer you have precluded the upload of .cfm files. Our too clever hacker
moves on to step 2 - the load test scenario.

Step 3: Load Test preparation

Our hacker sets up his load test tool. Load test tools can be made to do different
things, but one thing they do well is to simulate a barrage of HTTP requests at a
certain level. Our hacker begins by setting up his load tester to test against one URL -
www.ilovemoles.com/userphotos/bob.cfm. He sets it to run for 3 or 4 minutes and
configures it to simulate a fairly high level of traffic (even a low level might work with
repetition).

Step 5: Penetration

Now our hacker (I'm starting to feel an avuncular fondness for him) begins his load
test. Naturally the load test is returning a boat load of 404 errors which it is dutifully
logging. With the load test steaming along he logs into his ilovemoles.com account and
uploads bob.cfm as if it were a photo.

Hold the Phone!

Let's stop right here and consider what is happening under the hood with our code.

CFFILE action = "upload" - ColdFusion Creates a file handle, copies in the binary

ColdFusion Muse: Script Injection Attack: Smoking Gun?

http://www.coldfusionmuse.com/index.cfm/2009/4/21/Iframe.Followup.IIS.Config

to the location where the disk subsystem handles the linkage of all the little block
locations.
The file handle is released and ColdFusion receives back basic meta data about
the file and the upload operation in the form of the "file" object (file.clientfile,
file.serverfile, file.size etc).
CFIF Statement - The code Checks the extension on the file and says to itself
"Hmmmm... this isn't a jpg or gif or office document. I better delete it."
CFFILE Action = "delete" - CF Gets a new file handle using the path and file name
and "deletes" the file - an operation which simply removes the file location
marker from the disk system index.

The thing to take careful note of here is that in between file handle 1 and file
handle 2 this file exists on the disk and is accessible as a URL. Not only that, but
file operations being what they are the process has a natural latency to it from
marshalling data in and out of the underlying disk subsystem. So between the release
of file handle 1 and the acquisition of file handle two there might be 10, 20, 50
milliseconds or more - a number that would vary wildly based on capacity, usage and
the type of server.

It is this tiny little window of opportunity that the hacker uses to his advantage. His
load test code happily churning out 404 errors is firing off http requests at a rapid clip
and one of them can hit the file at the right moment and grab a handle. The file is
compiled into a CF class and executed - meanwhile your delete code will simply sit
there and wait for the operating system to return a new file handle for it's delete
operation. The OS obliges and does exactly that. As soon as CF is done compiling the
code to Java Bytecode your excellent validation code happily deletes the evidence
that the file was ever there to begin with. In fact, if you eschew web logging because
you use something like Google analytics you will never know this file was being probed
for or was ever on your disk.

Lessons Learned

Before we talk about prevention let me reiterate again that this approach is not a
"ColdFusion" flaw - even though my example uses ColdFusion. Any web application that
allows for upload directly into a web accessible directory that is configured with script
permissions will potentially be vulnerable (PHP, ASP, JSP et al). Here's my list of
preventative measures:

Protect this House - Do not upload directly into a web accessible directory. In
my view the proper approach is to upload to a directory that is outside the web
root and then move the file to its final destination once it is checked. ColdFusion
help docs often suggest the temp directory (use the function getTempDirectory())
and that is an acceptable solution to be sure - but any directory is fine as long as
it is not accessible via a URL.
Consider Cfcontent - In fact, unless you are serving just images you should
consider using CFCONTENT for things like office docs and other file types. That
way you can store your user files completely outside of the web root. CFCONTENT
will insure that the file is delivered as binary content to the web browser and not
executed on the server.
Script and Execute Permissions - For directories where you are storing user
content you should disable execute and script permissions. And FYI - you typically
don't need execute permissions under any circumstances.
Remove Superfluous Handlers - IIS comes installed with a boat load of handlers

ColdFusion Muse: Script Injection Attack: Smoking Gun?

for various things. They should all be removed unless you are explicitly going to
use them for something. Stuff like .cer, .cdx, .htr etc - are all virtually never
used, let alone on a web server open to the public. These mappings are there for
various internal and domain networking usage. I know it comes as a shock, but
Windows Server is primarily used in enterprise networking for managing the
needs of large groups or internal users for things like access, printing and file
sharing. A web server is only one of it's uses (and not always it's best one :).

Some Final Thoughts

I'm always looking for a smoking gun. With the recent spate of attacks I have been
frustrated by the fact that I am unable to determine the attack vector. I have
suspected FTP, FCK Editor and a variety of insecure coding techniques. This
explanation comes as close to explaining the "stealth" attacks as any I have run across.
I have to say I'm still not completely convinced in spite of how neatly this all fits
together. Still, it is one more thing to examine. Finally I would like to express my
thanks to a group of ColdFusion developers who shall remain nameless but helped me
uncover and vet this attack (thanks Gurus).

ColdFusion Muse: Script Injection Attack: Smoking Gun?

