ColdFusion Muse: Why You should worry about your execution plan

Why You should worry about your execution plan
Posted At : June 28, 2005 11:15 AM | Posted By : Mark Kruger
Related Categories: SQL tips, MS SQL Server, Coldfusion & Databases

No I'm not talking about dead man walking. I'm talking about your database execution
plan. 1 want to give fair warning to all of you Microsoft haters out there (and you know
who you are) that I'm going to use lingo from Microsoft SQL Server 2000. It's a
ubiquitous and full-featured database with good documentation regarding this subject.
Much of what is said here applies to other databases as well (no doubt using different
lingo). So please, feel free to post comments of how Oracle or MySQL or PostgreSQL or
Interbase or your flat file - all have a great way of doing this. But please don't post
about how your favorite DB is so great and Microsoft is the spawn of Satan. That's not
helpful and it's makes me want to poke out my eye with an ice pick! Whew! Now that
that's out of the way.

The database execution plan is the series of steps that a database takes to deliver a
particular query or task. These steps are cached on the DB server. When you run a
query it looks in the cache for a plan that matches. If it finds one, it uses it. If not, it
creates a new one. Why is this important? Because the more often your DB Server finds
a matching plan in the cache, the better it performs. In fact, it can run significantly
faster when it is not tasked with constantly building execution plans from scratch.
Here's the rub, much of the query code written in Coldfusion requires the RDBMS to
compile a new execution plan. Here's why.

The Execution Context

When you run a query the database determines the execution context. The execution
context is used to hold the data necessary to run the query. Think of it as an array of
arameters. Consider this example.

<cfquery name="get" datasource="#datadsn#">
SELECT * FROM users

WHERE username = 'BOB'
AND password = 'BOBSPASSWORD'
AND active = 1

</cfquery>

The execution context here is:

paramater 1 = Bob
BobsPassword
1

parameter 2

parameter 3

You can see there are really 2 parts to the query that the DB needs to run the query.
There is the context - the parameters to use in the query, and there is the execution
code. This is comprised of the keywords and syntax. The DB server parses the
execution code, inserting the context variables in the right spot, and then builds a
query plan.

The query plan

The query plan is the steps necessary to run the query. In it's simplest form:

<cfquery name="get" datasource="#datadsn#">
SELECT * FROM users
WHERE username = [context param 1]
AND password = [context param 2]



ColdFusion Muse: Why You should worry about your execution plan

AND active = [context param 3]
</cfquery>

To use the plan, the server only needs the context - the rest is already pre-compiled.
So, if could pass in an array of three parameters with a query that matches this one |
could get the plan to match and hit the cache. Cool!

Coldfusion Gotcha

You probably knew there was a catch didn't you. You see there is one more piece of
data that the DB server needs to make a hit on the cache. It needs to know the "type"
of the data in the context. Why? For 2 reasons. 1) Databases support conversion. For
example, if you pass in 2.43 to a field that holds an INT you will end up with 2. The DB
will know what to do with it. If you search "username = 1" (no single quotes) - the db
may know enough to treat it as a string. 2) Databases have to "sort out” the list of key
words from the list of parameters. If you do not specify a "type" for a parameter you
force the DB to parse through the whole string and sort out the execution code from
the context.

Let me illustrate it with some code. If you write a query like the one above, here's
what the SQL server will see.

<cfquery name="get" datasource="#datadsn#">
SELECT * FROM users

WHERE username = [some unknown type of variable]

AND password = [some unknown type of variable]

AND active = [some unknown type of variable]
</cfquery>

The DB server will then have to take what it does know (the column names) and "look
up” the type of the column. So it would first look and see that username and password
are both strings, and treat parameters 1 and 2 as strings. Then it would look up the
column "active" and examine parameter 4 to "see" if it tested correctly as an INT. Then
it would compile an execution plan based on what it had discovered. You are not
"Telling" the DB enough to be efficient.

The Solution - CFQUERYPARAM

The solution is CFQUERYPARAM. With it you provide a "typed execution context”. You
tell the DB enough to look up the plan straightway. It doesn't even need to look for the
column name types and match them with the context. Why? Because if it finds a
cached execution plan it means that this query has been run successfully before, and
the bindings ensure that the context data is typed correctly. It has a measure of
guarantee that the plan will succeed. So, using the same query:

<cfquery name="get" datasource="#datadsn#">
SELECT * FROM users

WHERE username = <cfqueryparam cfsqgltype="CF SQL CHAR" value="BOB">

AND password = <cfqueryparam cfsqgltype="CF SQL CHAR" value="BOBSPASSWORD">

AND active = <cfqueryparam cfsqgltype="CF SQL INTEGER" value="1">
</cfquery>

we “tell” the DB server enough that it can skip a few steps and hit the cached plan.
Here's what the server sees.
<cfquery name="get" datasource="#datadsn#">

SELECT * FROM users
WHERE username = [a String variable]




ColdFusion Muse: Why You should worry about your execution plan

AND password = [a String variable]
AND active = [an INT variable]
</cfquery>

There are other reasons to use data binding (SQL Injection attack prevention is chief
among them), but the performance benefit can be quite dramatic. | have seen as much
as a 40% decrease in query execution time - just by adding cfqueryparam. Here's
another tip, add the shell for CF_SQL_CHAR and CF_SQL_INTEGER to your IDE as a short
cut (snippet). It will save you a lot of typing. These are by far the 2 most common
types.

One more tip. On MS SQL server, fully qualifying the objects in the query can further
increase your chances of hitting the cache. So "SELECT * FROM dbo.users" has a better
chance than just "SELECT * FROM users". SQL 2000 is far superior to SQL 7 in this regard
- but even it can benefit from fully qualified objects.



