ColdFusion Muse: Hanging Jrun Threads and MS SQL Parallelism

Hanging Jrun Threads and MS SQL Parallelism
Posted At : November 18, 2011 1:59 PM | Posted By : Mark Kruger
Related Categories: MS SQL Server, Coldfusion & Databases

Recently one of our systems started misbehaving. In this system we had 2 ColdFusion 8
servers connecting to a single MSSQL 2005 server. All the hardware was quite good -
plenty of RAM, Fast disks, moderate traffic etc. The system had been in place for some
time. But (and isn't this often the case) we moved a new design in place with some
changes to the query code and suddenly our well-behaved system started acting like a
sugar-laden toddler in the cereal aisle.

Watching the "running request” counter for ColdFusion | noticed that it was slowly
accumulating requests. When that happens (threads slowing building up over time) you
usually have to prepare for some frustrating troubleshooting ahead. When a server is
“crashing” you can often pinpoint the error. Crashing servers tend to suddenly fill up
running requests and the request queue and the log files will generally have some
clues occurring right around that time. But this was different. In this case the request
count climbed slowly and was seemingly random. And these threads did not show up in
the list of "active requests” in the CF monitor either. Aha! | thought. This is my old
networking issue! You might not remember this but a few years ago we discovered that
auto-synching ports can sometimes cause phantom connections to hang on a DB
intensive application (see).

But a quick checkup of network settings showed that this was not the case. Network
connectivity was excellent and both DB and the 2 servers were connected through the
same Cisco switch. So it was on to the database. Why the DB? Why not scour through
JVM settings and fiddle with CF request settings? For one thing, 80% of the time it's not
CF or the DB but some combination of the 2 (bad query writing, resource constrained
DB, drivers etc). In this case the 2 common denominators were the database and the
new code - but | believed the DB was our lowest hanging fruit.

Processor Usage

Sure enough a check of the database showed processor usage that did not look normal.
Wait a minute Muse... don't you have any baseline numbers for that assumption? Nope,
not at this point. I'm letting my experience guide me. When you have 4 cores and 2 of
them are at a flat lined 50% you generally know something is wrong. In fact a quick
check of the accumulating requests on CF showed a 20-25% per thread correlation. In
other words, each of my hanging threads was using 20% or so of one core on the SQL
server. Once it was hung that thread continued to use 20% of one SQL server core in
perpetuity until CF was restarted.

The funny thing was that under regular load the DB processors was extremely
underutilized until one of these threads was produced. The DB processors would stay
at between 1 and 5 percent most of the time - practically idle. When one of these
"special threads" came along, one proc out of the 4 of would "jump up"” to 20 or 25
percent but the rest would idle along as before.

Finding the Problem

We tried a great many things. We patched and hot fixed, shrunk and optimized files,
added and removed indexing etc - all of which was helpful and necessary, but none of
which permanently "fixed" our problem). Finally, | was looking at the "activity monitor”

http://www.coldfusionmuse.com/index.cfm/2006/6/2/hanging.threads.network.Config

ColdFusion Muse: Hanging Jrun Threads and MS SQL Parallelism

in MSSQLO5. The activity monitor "process info" view shows a list of connections along
with some extra data, process ID, database, status etc. If you double click on an item
in the row you will see the currently running query or task. You have to sort of "get
lucky” to see it since most of them fly by pretty fast.

In any case | was watching this view (refreshing every 10 seconds) while there were no
hanging threads and suddenly | saw something that made me scratch my head. A
process ID was duplicated about 3 or 4 times. Each of the duplications had a "wait
time"” and a "wait type" of CXPACKET. So this process ID was spawning multiple threads
under a single ID. And the wait time made me think that this might be our offending
process. Looking at the processor utilization | noticed that sure enough, | had a 20%
utilization on one core. Going back to my CF servers my suspicions were confirmed. We
had a hanging thread on one of the servers - so this CXPACKET thing required some
more investigation.

First however, | thought | might try to mitigate the problem from within the activity
monitor by killing off this process ID. If | was successful | would have a new mitigation
technique that would not involve any potential user disruption, with the exception of
whoever was running the query that was locking up these threads (and they were
probably tapping their fingers on the desk waiting anyway). So | tried the "kill process”
button from the activity monitor, but | had to kill all of them individually and | couldn't
catch them all before they re-spawned - or maybe I'm just too old. Turning to SQL
Studio | ran the query KILL 55 (where 55 was the process ID in question). That did the
trick and it was indeed a magic bullet. As soon as | "killed” that process ID - all the
sub-processes were terminated as well. My CF server dropped the hanging thread and
SQL Processor usage went back down to normal.

The Fix

Ok so now what? | could hire a temp to sit in front of the activity monitor all day and
kill off any process ID with a CXPACKET Wait type that correlated to a CF hanging
thread. | could probably write a complicated SQL script to find these threads and
terminate them (Il kind of liked that idea actually). In the end | chose to do a little
research into CXPACKET wait types. | was fortunate to stumble onto by Pinal
Dave. It turns out that a CXPACKET wait is related to parallelism. Now parallelism is
how MS SQL chops up the work load of a query and makes full uses of your processors
to get the work done. Much like cfthread splits work out and then joins it back
together, SQL splits the work out and then an "organizing” thread "waits" for all the
individual threads to complete. Once they have all completed it assembles the data for
return to the client. Make sure and read the full article as well as the comment by
Jonathan Kehayias at the bottom - excellent stuff!

In any case my SQL server was suffering from not being able to reassemble threads
from this division of labor. I'm not sure why that might be (I have some ideas) but the
long and short of it is that attempts at parallelism for query execution were causing
hanging Jrun threads on my CF server. Following Pinal's guide (and a couple of MS
resource pages) | tried setting the max degree to 2 and the threshold to 20, 25, 30...
looking for a "sweet spot” where most of my queries would execute without
parallelism, reserving it for the report or aggregation queries in the admin section of
this site. Unfortunately that didn't work. The issue here was likely a specific query
with some new joins in it that was always going to trigger parallelism and ofen fail to
complete - causing our hanging thread issue.

http://blog.sqlauthority.com/2011/02/06/sql-server-cxpacket-parallelism-usual-solution-wait-type-day-6-of-28/

ColdFusion Muse: Hanging Jrun Threads and MS SQL Parallelism

Finally, | set the "max degree” to 1. Doing this meant that there would be a 1 to 1
relationship between threads, process IDs and queries. In other words, a given query
would never use more than one core execution thread. Now you might think this is
problematic because it doesn't make full use of SQL's tuning engine. Technically you
are right. | would only say that in a typical web application the query traffic generally
consists of dozens of very short queries where parallelism would actually add
additional time to the process. So in a typical web application you lose very little by
minimizing the degree of parallelism. And indeed that appeared to be the case in our
web application. Our CXPACKET waits, hanging threads and egregious processor usage
all went away and things have been functioning smoothly since then.

The Aftermath

The Muse knows his readers well. Some of you want to hammer me about not fixing the
real problem - that specific query in the code. Not to worry. Using SQL's performance
dashboard we teased out the worst offenders and set our ColdFusion developers to
analyzing the code. But | suspect the version of SQL or something about the hardware,
hyperthreading or NUMA to be a more likely culprit. | have never seen SQL's execution
planner cause a problem when it turns to parallel execution before. Still - it's always a
good idea to fine tune that query code.

