
Coldfusion, SSL 3.0 and Authorize.net
Posted At : February 24, 2009 4:38 PM | Posted By : Mark Kruger
Related Categories: ColdFusion, Hosting and Networking

I've been batting this around for a few days now. Recently, Mary Jo Sminkey of CF
Webstore fame posted a note to an email list about the recent requirement by
Authorize.net that incoming requests to their API use SSL 3.0. I confess to being
unaware of the differences between SSL 2.0 and 3.0. So I set out to discover for
myself. To start with SSL 2.0 uses weaker handshaking. A requesting client can, it
seems, edit the list of preferences leaving the server no choice but to hand shake with
the "lowest common denominator" cipher. There are some other issues as well dealing
with how the packets are constructed etc. So the consensus is that SSL 2.0 is the weak
sister and should be deprecated. For its part SSL 3.0 has been around for a decade or
so and is widely supported.

The question is, will my CFHTTP calls from ColdFusion 6 or Coldfusion 7 still work
when Authorize.net disables SSL 2.0? To answer this question I got some great help
from Scott Krebs over at Edge Web. He dug out three or four URLs that were really
helpful. I've included them at the bottom of this post. I also got some guidance from
the Stephen Hawking of cryptography, Mr. Dean H. Saxe (the H is for Holy Cow he
knows a lot). The answer is a qualified yes. Anyway, here's what I did to test while I
wait for Authorize.net to get their act together and set up a test bed.

Testing SSL 3.0

First I had to prep a server so that it only supports SSL 3.0 and above (we'll talk about
the "above" in a moment). I logged into the desktop of one of my ColdFusion 7 windows
servers and used these instructions to disable SSL2.0. I also disabled PCT for good
measure - although I did not have the time to figure out exactly what it is. I restarted
the server.

Next I obtained a public cert for a URL and installed it on the web server. Now,
theoretically, connecting to that site could only be done via SSL 3.0 or above. So far so
good. Note, the "public" cert is important too. I used a Thawte cert so I could
guarantee that the keystore would trust it. I didn't want to mistake an issue with the
keystore for a problem handshaking.

Finally, I followed the instructions found Here to add a debug switch to my jvm.config
file. I cleared out the coldfusion-out log and restarted ColdFusion on the server. At this
point, Java was logging any cfhttp calls into the coldfusion-out log, including the
handshake stuff. I ran the following code:

<cfhttp url="https://www.exampleSSL.com/index.html"></cfhttp>

...obviously replacing www.examplessl.com with the FQDN of the cert I had installed.
The code ran correctly and I was able to retrieve the content of the page. That meant,
at a minimum, my ColdFusion 7 server was able to connect successfully using SSL 3.0
(or above). I ran off to examine the coldfusion-out log
(<%Cfusionroot%>/runtime/logs/coldfusion-out.log) to see what I could see. One note,
the coldfusion-out.log on a CF Standard server traps the "standard output" from the
JVM when you are set up with CF as a service. If you are doing something else - running
enterprise over Websphere or multi-server/JRUN or perhaps running ColdFusion from
the command line - your standard output might be piped to a different file or even to

ColdFusion Muse: Coldfusion, SSL 3.0 and Authorize.net

http://www.cfwebstore.com
http://www.cfwebstore.com
http://www.authorize.net
http://www.edgewebhosting.net
http://support.microsoft.com/?id=187498
http://kb.adobe.com/selfservice/viewContent.do?externalId=9987e902

the console.

The Findings

First off, there is a great deal of stuff going on behind the scenes when you make an
SSL connection. Running the above request only one time generated over 30k of log
data. About 95% of it is the crypto stuff - registers of tabbed hex data. But looking
carefully I found the following lines:

jrpp-0, WRITE: SSLv2 client hello message, length = 98

jrpp-0, READ: TLSv1 Handshake, length = 914

*** ServerHello, TLSv1

RandomCookie: GMT: 1218720998

....

A bunch more cypher stuff... Followed by:
....
jrpp-0, WRITE: TLSv1 Handshake, length = 32

jrpp-0, READ: TLSv1 Change Cipher Spec, length = 1

JsseJCE: Using JSSE internal implementation for cipher RC4

jrpp-0, READ: TLSv1 Handshake, length = 32

There were more references to TLSv1 before the connection was closed. What to make
of it? Well, for one thing no mention of SSLv3 is made anywhere in the log. What gives?
I thought that I had disabled SSL 2.0, and clearly I'm making a successful SSL
connection, but looking at the log it seems I'm making a "TLS 1.0" connection instead of
SSL 3.0.

The Fine Print

It turns out that both Coldfusion 6 and Coldfusion 7 (really the 1.4.2 JVM) support SSL
3.0 by way of the TLS 1.0 protocol. This protocol is sometimes called "SSL 3.1" and it
represents a slightly better implementation. Connections will actually attempt this
protocol first and use it if successful. I would go so far as to say if you are using
ColdFusion 6 or 7 and making HTTPS calls from within your code you are likely already
using TLS and therefore compliant. MSDN puts it this way:

TLS is a standard closely related to SSL 3.0, and is sometimes referred to as "SSL
3.1". TLS supersedes SSL 2.0 and should be used in new development. Applications
that require a high level of interoperability should support SSL 3.0 and TLS. Because
of the similarities between these two protocols, SSL details are not included in this
documentation, except where they differ from TLS. (article link)

Of course one thing to bear in mind would be if a provider only supports SSL 3.0 and
chooses to disable TLS for some reason then CF 6 and 7 would be out of luck. Still, I'm

ColdFusion Muse: Coldfusion, SSL 3.0 and Authorize.net

http://msdn.microsoft.com/en-us/library/aa380515(VS.85).aspx

reassured that TLS is actually one step "above" SSL 3.0 and represents the higher level
of encryption rather than a lateral or lower level. It is enabled by default and I have
seen no guidance anywhere suggesting that it be disabled for any reason.

One Gotcha

Note that this does not address the specific use of client certificates to handshake with
SSL. That's a different scenario. Check out this post from Steven Erat that gives a
rundown on that issue. If you need to use a client cert to connect then the main
problem is that there is no way in the cfhttp or cfinvoke or cfldap tag to specify the
location of the cert. In that case you will either need a custom solution (a Java library
or something) or you will need to upgrade to ColdFusion 8 which happily supports a
clientcert and clientcertpassword attribute.

Resources Summary

The following links were helpful to me. Some of them are mentioned in this article.
Again, my thanks to Scott Krebs and the folks from circle of Gurus who always come
through with great information.

Disabling SSL 2.0
Steve Erat on SSL 3.0 and ColdFusion Tags
How to Enable SSL Debug Information
Understanding SSL Debug Info (from Sun)
Differences Between TLS and SSL 3.0
Analysis of SSL 3.0 (David Wagner - Berkeley & Bruce Schneier - Counterpan sys.)

Dean Saxe also pointed me to an excellent Foundstone tool called SSL Digger. It
allows you to test SSL connections and examine the handshake protocols to see what is
happening under the hood. Thanks Dean.

As always, this article is intended as a starting point to pull together resources. I'm
interested in the findings of anyone who is working on this issue or related issues. I'm
always grateful to my vigilant readers for expanding my knowledge.

ColdFusion Muse: Coldfusion, SSL 3.0 and Authorize.net

http://www.talkingtree.com/blog/index.cfm/2006/11/14/ColdFusion-Protocol-Tags-CFHTTP-CFINVOKE-CFLDAP-support-SSLv2
http://support.microsoft.com/?id=187498
http://www.talkingtree.com/blog/index.cfm/2006/11/14/ColdFusion-Protocol-Tags-CFHTTP-CFINVOKE-CFLDAP-support-SSLv2
http://kb.adobe.com/selfservice/viewContent.do?externalId=9987e902
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/ReadDebug.html
http://msdn.microsoft.com/en-us/library/aa380515(VS.85).aspx
http://www.docstoc.com/docs/2408263/Analysis-of-the-SSL-30-protocol-Abstract-1-Introduction-2-Background
http://www.foundstone.com
http://www.foundstone.com/us/resources/termsofuse.asp?file=ssldigger.zip

