
ColdFusion, SSL, SNI, SAN and Wildcards - Stuff You Need to Know
Posted At : May 29, 2015 1:35 PM | Posted By : Mark Kruger
Related Categories: ColdFusion, Coldfusion Troubleshooting 

The Muse welcomes back his friend and colleague (and super genius guru) Wil
Genovese with an timely post on SSL and Certificate types. If you have had your head
in the ground (or perhaps you have been guest staring on "Naked and Afraid" or
"Survivor") you may have missed the hubbub surrounding TLS, SSL and changes and
support. There is a lot going on and it is more important than ever that you get your
hands around the issue to keep your users safe. Wil has done Yeomen's work identifying
the types of certs, the versions of ColdFusion and Java that support them, and work
arounds and caveats for those of you who need them. You will likely want to bookmark
this one. Take it away Wil. 

Here at CF Webtools we are getting a lot of companies coming to us with various
CFHTTP issues. Lately this has been happening even more as SSL has been in the news
more and certain SSL protocols and encryption levels have gone away or are on the
way out. Most recently Wildcard and Subject Alternative Name certificates have been
a concern for those running older ColdFusion servers with older versions of Java. 

Wildcard vs. Subject Alternative Name (SAN) certificates

A wildcard SSL certificate allows for unlimited subdomains to be protected with a
single certificate. For example if you owned "example.com" a wildcard would allow you
to secure www.example.com, mail.example.com, or admin.example.com. Such a
certificate would be issued to *.example.com and it could secure any subdomain of
example.com for the device on which it was installed. 

A SAN cert allows for multiple domain names to be protected with a single certificate.
It could, for example be issued to multiple fully qualified domains such as
www.domain.com, www.domain2.com, www.domain3.com and secure all of them.
This allows for the SAN SSL to be used for multiple sites on the same server all bound
to the same IP Address. This is similar to "SNI" - see my previous post on "What You
Need to Know About CFHTTP, SSL and SNI. In addition, this article by Thawte is a
good primer. Let's take them each in turn. 

Case Study 1 - Wildcard SSL

We had a client's ColdFusion 9 server that was minding its own business and happily
using CFHTTP to access a remote API via SSL. Even though the API provider claims they
did not change anything our client was suddenly left without the ability to access the
API. Debugging this gave the famous connection failure error.

When you see this error - especially with "peer not authenticated" - you can bet the
problem is due to SSL somewhere along the line. It might mean there's a privately
issued SSL or an obscure certificate authority provider leaving the Java keystone
without a valid CAROOT certificates. The problem is normally resolved by using the
keytool application in Java to import the SSL certificate in to the default Java keystore
(/jre/lib/security/cacerts). See the Muse post for Trusted Keystore instructions. So in
this case the first thing we tried was importing the SSL certificate, which did not work.
Taking a closer look at the certificate we noticed that it was a Wild Card cert. 

ColdFusion Muse: ColdFusion, SSL, SNI, SAN and Wildcards - Stuff You Need to Know 

http://www.cfwebtools.com
http://www.trunkful.com/index.cfm/2013/7/22/What-You-Need-To-Know-About-CFHTTP-SSL-and-SNI
http://www.trunkful.com/index.cfm/2013/7/22/What-You-Need-To-Know-About-CFHTTP-SSL-and-SNI
https://community.thawte.com/blog-posts/difference-between-wildcard-ssl-vs-san-certificate




http://www.coldfusionmuse.com/index.cfm/2005/1/29/keystore


Failure to handle wild card certs is a known issue in ColdFusion 9 and even made the
bug list (https://bugbase.adobe.com/index.cfm?event=bug&id=3566218). It has
since been fixed in ColdFusion 10 and 11, but with the client unwilling to upgrade we
set about looking for a solution or work around. 

Even after upgrading ColdFusion 9 to Java 1.7 we still had the same issue. I have a
test bed system here with ColdFusion versions 8, 9, 10 and 11 and I'm setup for testing
CFHTTP and SSL issues. It's been a hot topic in the past 6 to 9 months due to all the
current and coming changes. I was able to test the same code snippet easily on each
ColdFusion version with each version of Java from 1.6 to 1.8. Even on CF 11 using Java
1.8 we had the same problem. We did get a different error message however. 

That message I/O Exception: handshake alert: unrecognized_name gave us something
more that just I/O Exception: peer not authenticated. Our crack research team of
ColdFusion Guru's here at CF Webtools (including the Muse) went to work Googling and
reading. They quickly found a couple things I hadn't uncovered in my research. One of
them was this blog post about a Java setting seen below. 

-Djsse.enableSNIExtension=false"

This setting is added to the arguments in your jvm.config file. Do yourself a favor and
learn to manually edit this file. The CF Admin has a finicky relationship with
non-typical JVM arguments. In any case, this particular argument was added to the
possible argument list in Java version 1.7 and it is one I had not seen or used before. I
immediately tested the setting and it worked! Obviously more research was warranted
but it seemed a possible solution might be around the corner. 

The additional testing and research was to see if this Java setting worked on its own or
if we still needed to import the SSL certificate. In this case we did need to import the
SSL certificate and use the Java setting "-Djsse.enableSNIExtension=false". It's a
solution that works for ColdFusion 9, ColdFusion 10 and ColdFusion 11 all running on
Java 1.7 or newer. This additional Java config setting turns off the Server Name
Indication (SNI) capabilities in the JVM. Note the trunkful link posted above for more
information on SNI. 

We were able to test with another site API (https://api.escapia.com/) that is using a
wildcard SSL, finding that all that was needed was to import the SSL Certificate. This
tends to confirm that the first SSL Certificate in our test case was actually using the
SNI feature on their web server which is why the argument
"-Djsse.enableSNIExtension=false" was needed. As far as I know there is no way to
remotely detect if SNI is enabled on a host server. 

NOTE: If you do not know how to import an SSL certificate into the Java keystore then
read this Muse post on SSL and the Trusted Keystore in Java. Remember to that the
keystore is located in the Java root directory - as in {java
root}/jre/lib/security/cacerts. If you have upgraded Java that's the location of the new
SDK. It takes a bit of trial and error to get those command line switches just right with
regard to the proper location of hte cacert file. Just remember to make sure you get
the correct Java location as defined in your JVM.config file. 

Case Study 2 - SAN SSL Certificates

ColdFusion Muse: ColdFusion, SSL, SNI, SAN and Wildcards - Stuff You Need to Know 





https://bugbase.adobe.com/index.cfm?event=bug&id=3566218
http://www.trunkful.com/index.cfm/2013/8/8/ColdFusion-on-Java-17




http://www.coldfusionmuse.com
http://javaresolutions.blogspot.com/2014/07/javaxnetsslsslprotocolexception.html
http://www.coldfusionmuse.com/index.cfm/2005/10/28/jvm.gc
http://www.trunkful.com
http://www.coldfusionmuse.com/index.cfm/2005/1/29/keystore


Case Study 2 - The SAN SSL

You might have noticed that the ubiquitous payment gateway, PayPal, has announced
that they are dropping SHA-1 (160bit) SSL certificates and they will be going to SHA-2
(256bit) SSL certificates. Some quick initial tests on ColdFusion 8.0.1 failed to work
with the following code. 

<cfhttp url="https://api-s.sandbox.paypal.com" port="443" METHOD="get"
USERAGENT="Mozilla/5.0 (Windows; U; MSIE 9.0; WIndows NT 9.0; en-US))">
</cfhttp>

ColdFusion 8.0.1 returns "I/O Exception: Name in certificate
http://api-s.paypal.com does not match host name
http://api-s.sandbox.paypal.com"

Yes, we have customers using ColdFusion 8 (one customer is even still on ColdFusion 5)
- don't be judgy. Anyway, this got a few of us at CF Webtools researching to see what
the issue could be and what can be done to resolve the issue. What we found is that
using a SAN SSL certificate won't work at all with Java 1.6.0_45. Since ColdFusion 8
and older is only capable of running on Java 1.6 (or less) lower this leaves those
servers using CFHTTP to access PayPal out in the cold1. Of course it's really time to
start thinking about upgrading those server and this gives CFWT one more arrow in our
quiver to convince our customers. Yes, there is a third party CFX tag you can use on
Windows servers, but I'd rather encourage customers to get on a newer server. Such
old, outdated and no doubt insecure servers are not wise in production use! 

Update and Revision

This blog post has been a few weeks in the making due to all the various test cases and
research. Currently the PayPal PRODUCTION URL does work with the new, upgraded
SHA-2 (256Bit) SSL SAN certificate on ColdFusion 8.0.1 with Java 1.6.0_45. I know I
know - it was a shock to us as well. There is some bad news however. The sandbox URL
still fails. For we are going to hang our hat on the following statement - ColdFusion
8.0.1 on Java 1.6 working with a SAN type SSL can be problematic and if you need
to verify against one of the SAN names then most likely it will fail. Some examples
might help. 

<!--- THIS WORKS --->
<cfhttp url="https://api-s.paypal.com" port="443" METHOD="get" USERAGENT="Mozilla/5.0
(Windows; U; MSIE 9.0; WIndows NT 9.0; en-US))">
</cfhttp>

<!--- THIS FAILS --->
<cfhttp url="https://api-s.sandbox.paypal.com" port="443" METHOD="get"
USERAGENT="Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US))">
</cfhttp>

Here's my theory and until someone proves it one way or the other it's what I'm sticking

ColdFusion Muse: ColdFusion, SSL, SNI, SAN and Wildcards - Stuff You Need to Know 

https://ppmts.custhelp.com/ci/fattach/get/487025/1429638687/redirect/1/filename/2015%20Merchant%20Security%20System%20Upgrade%20Guide%20(U.S.%20English).pdf
http://www.cfwebtools.com
http://adiabata.com/cfx_http5.cfm






to. I believe that the engine for CFHTTP SSL in the Java layer ignores the SAN attribute
in the SSL certificate, but in this case the PayPal SSL certificate Common Name
actually matches the production URL so that's why it works. It is sort of being "fooled"
into treating it like a standard certificate. This gives those running on outdated
systems a little more time to get up to date. 

More Good News

Further testing on ColdFusion 9.0.2 with Java 1.6.0_45 did not go as I expected. The
same sandbox URL that failed on Java 1.6 using CF 8, succeeded on Java 1.6 using CF
9. It does appear that ColdFusion 9.0.2 really does accept SAN SSL certificates. Future
testing on addition SAN type SSL certificates will be needed to complete verify this.
And the same is true for ColdFusion 9.0.2 on Java 1.7. Both test cases also worked for
the production URL too. Testing on ColdFusion 10 and 11 thankfully passed for all case
scenarios. 

Aftermath

Thanks Wil for a great effort. It's tough staying ahead of the curve but you make us all
look good. As always readers, the Muse welcome comments - especially ones that add
to our universe of knowledge. Just keep it positive folks. 

ColdFusion Muse: ColdFusion, SSL, SNI, SAN and Wildcards - Stuff You Need to Know 






