
CFCs, the Variables Scope, and the Application Scope
Posted At : June 16, 2008 6:21 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Tips and Techniques, Coldfusion 8

It's pretty common to use the application scope to cache components. If your
component is a collection of methods or data access functions it's often faster to put
them into the application scope than it is to create an instance with each request.
Now you probably know that you should quality all of the variables in a function with
the "var" key word. This insures that the variable exists inside the "scope" of the
function call. This allows multiple function calls to be made to the same instance
without one set of variables over writing the other.

One of the areas where this can be difficult to manage is when using a ColdFusion tag
that creates its own scope. Take CFHTTP as an example.

The Problem

Consider this "test.cfc" component.

<cfcomponent>
 <cffunction name="test">
 <cfhttp url="http://www.yahoo.com"/>
 </cffunction>

 <cffunction name="test2">
 <cfhttp url="http://www.cfwebtools.com"/>
 </cffunction>

 <cffunction name="dumpthis">
 <h4>This scope</h4>
 <cfdump var="#this#"/>
 <h4>Variables Scope</h4>
 <cfdump var="#variables#"/>
 </cffunction>

</cfcomponent>

It doesn't do much. It simply makes a CFHTTP call to 2 different web sites within 2
different functions - test() and test2(). As you probably already know when you create
a CHTPP call Coldfusion automatically creates a structured variable called "cfhttp" for
you to work with. The results "page" or "content" of the HTTP call is stored in
"filecontent" - so "cfhttp.filecontent" contains the results you are after. So far so good.

The function "dumpthis()" dumps out 2 scopes that exist within the scope boundaries
of the component - "this" and "variables".

Now consider this test framework.
<cfif NOT isDefined('application.test')
 OR isDefined('url.refresh')>
<!--- caching our test component --->
<cfset application.test = createobject("component", "test")/>
<!--- running one of the functions --->
<cfset application.test.test()/>

</cfif>

<h1>Dump the this and variables scopes</h1>

ColdFusion Muse: CFCs, the Variables Scope, and the Application Scope

<h1>Dump the this and variables scopes</h1>
<cfset application.test.dumpthis()/>

<!--- run the 2nd call --->
<cfset application.test.test2()/>

<h1>Dump the new content</h1>
<cfset application.test.dumpthis()/>

<!--- local variables empty --->
<cfdump var="#variables#"/>

This code instantiates the "test" CFC in the application scope if it does not already
exist and then runs a call to "test" (the function retrieving the yahoo page). It dumps
out the “this” scope and “variables” scope that belong to the component. If you run
the test you will notice that a cfhttp variable containing the Yahoo content is a part of
the "variables" scope inside the CFC.

Finally, the code runs the function "test2()", which retrieves the cfwebtools page. The
dumpthis() functions shows that now the variables scope contains a cfhttp variable
that contains the cfwebtools content.

The implications

Maybe you are saying, “So what ... that's what I would expect”. But the implications
reach a bit farther than that. What is actually going on here is that the variables scope
that is local to the CFC is persisting in the application scope. In fact, once you have
run the code above put the following code on a separate script within the same
application.

<cfset application.test.dumpthis()/>

You will notice that, even though you have not called either test() or test2(), the
variables scope still contains a cfhttp variables and the "filecontent" key still contains
the content of the last cfhttp call made. How would this a problem? Let's say that 2
requests arrive simultaneously - one designed to return the results of "test()" (the
yahoo page) and the other designed to return the results of test2() (the CF Webtools
page). One request could overwrite the other and they could both get the same
content even though they both fired different functions from entirely different request
threads. Consider the implications for a web service, stock quotes, tracking
information etc. You could cause yourself some real data headaches.

The fix

How to fix it? Luckily there is a useful attribute called "result" that you can use for your
CFHTTP call. The fix is to var the result variable and then use it as an attribute to your
CFHTTP tag:

<cffunction name="test">
 <cfset var rs = ''/>
 <cfhttp url="http://www.yahoo.com" result="rs"/>
 </cffunction>

 <cffunction name="test2">
 <cfset var rs = ''/>
 <cfhttp url="http://www.cfwebtools.com" result="rs"/>
 </cffunction>

ColdFusion Muse: CFCs, the Variables Scope, and the Application Scope

This keeps the CFHTTP results encapsulated inside the function scope. Rerun the test
script and you'll find that there is no longer a CFHTTP variable in the CFC's variable
scope.

Of course in addition to CFHTTP there are other Coldfusion tags that create special
scopes (cffile with the "upload" action for example). As a rule of thumb when you are
caching CFCs in the application scope, take an extra look at any calls to external
resources made from within a function.

And now, dear readers, I'm sure that some of you will be tempted to comment on
whether you should or should not be using the application scope in this way. Please
understand that the muse believes there are folks on both sides of the issue that have a
legitimate point of view - and keep the comments charitable.

ColdFusion Muse: CFCs, the Variables Scope, and the Application Scope

