
Using the WITH RECOMPILE option in a Stored Procedure
Posted At : April 13, 2005 4:07 PM | Posted By : Mark Kruger
Related Categories: SQL tips 

This is an excellent article by Arthur Fuller that was sent as a Builder.com newsletter.
If you've ever wondered why a stored procedure doesn't save quite as much time as you
expected - or why equivelent query code can even be faster - this may be the answer. 

STYLE type=text/css> .normalCourier { FONT-SIZE: 13px; FONT-FAMILY: Courier }
.titleArialBold { FONT-WEIGHT: bold; FONT-SIZE: 18px; FONT-FAMILY: Arial, Helvetica,
sans-serif } .normalArial { FONT-SIZE: 13px; FONT-FAMILY: Arial, Helvetica, sans-serif }
.normalArialItalic { FONT-SIZE: 13px; FONT-STYLE: italic; FONT-FAMILY: Arial,
Helvetica, sans-serif } .smallArial { FONT-SIZE: 11px; FONT-FAMILY: Arial, Helvetica,
sans-serif } .smallArialWhiteUnderline { FONT-SIZE: 11px; COLOR: #ffffff;
FONT-FAMILY: Arial, Helvetica, sans-serif; TEXT-DECORATION: underline }
.smallArialWhite { FONT-SIZE: 11px; COLOR: #ffffff; FONT-FAMILY: Arial, Helvetica,
sans-serif } .subhead1 { FONT-WEIGHT: bold; FONT-SIZE: 16px; FONT-FAMILY: Arial,
Helvetica, sans-serif } .smallVerdanaBoldWhite { FONT-WEIGHT: bold; FONT-SIZE:
11px; COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif }
.smallVerdanaBold { FONT-WEIGHT: bold; FONT-SIZE: 11px; FONT-FAMILY: Verdana,
Arial, Helvetica, sans-serif } .smallArialBoldOrange { FONT-WEIGHT: bold; FONT-SIZE:
11px; COLOR: #ffcc66; FONT-FAMILY: Arial, Helvetica, sans-serif } .contentborder {
BORDER-RIGHT: #000 1px solid; BORDER-LEFT: #000 1px solid; BACKGROUND-COLOR:
#f0f0df } #sky { BORDER-RIGHT: #e6e6e6 4px solid; PADDING-RIGHT: 1px; BORDER-TOP:
#e6e6e6 4px solid; FLOAT: right; BORDER-LEFT: #e6e6e6 4px solid; BORDER-BOTTOM:
#e6e6e6 4px solid; BACKGROUND-COLOR: #e6e6e6 } #title { BACKGROUND-COLOR:
#66717d } #contentcopy { MARGIN: 2px 8px } 

The WITH RECOMPILE option in MS SQL

Understanding the WITH RECOMPILE option 

The generally accepted wisdom about stored procedures (or sprocs) is that because
SQL can optimize and compile them, they run more quickly than the equivalent SQL
statements executed from Query Analyzer (or perhaps passed in from some front-end
app such as a Web page or VB program). This is true, as far as it goes; the trouble is, it
doesn't go very far. 

To understand this, you need to know what SQL Server does with a new sproc. At
creation time, it checks the syntax. If it doesn't find any errors, then it adds the sproc
to the system tables: sysobjects, sysdepends, and syscomments (the latter stores the
body of the sproc). By default, it doesn't compile the sproc at creation time. 

Upon first execution of the sproc, SQL Server optimizes and compiles it. This is when
SQL Server devises a query plan and stores it in its procedure cache. On subsequent
invocations, SQL looks in the cache first, finds the sproc there, and doesn't compile it.
If the sproc isn't in the cache, then SQL Server compiles it and places it in the cache. 

My experience with the WITH RECOMPILE option 

A while back, I was supporting a search page that allowed its users to search by any of
several columns. Then the page called a sproc, passing a parameter to indicate which
column to search. I examined the parameter using a CASE block, and then executed

ColdFusion Muse: Using the WITH RECOMPILE option in a Stored Procedure 

http://www.builder.com


one of several queries, depending upon the column to search. 

I knew something was wrong when I began to test my allegedly clever stored
procedure. In theory, the performance of each search should at least be approximately
the same, but that isn't what happened. When I performed multiple searches,
regardless of the order, the first would be fast, and subsequent searches were much
slower. 

Finally, I realized that the first time the procedure was called, a query plan was
devised and stored in the cache. As long as I searched on that particular column,
everything would work as expected. The moment I switched columns, however,
performance plummeted. Why did this happen? 

The first search I performed created a query plan and stored it in the cache. For
instance, say I was searching on the column OrderDate. If I switched the search to the
CompanyName column, SQL would blindly use the cached query plan, searching for the
target company name using the OrderDate index. No wonder performance would
plummet so dramatically. 

The fix is quite simple. I executed the sproc supplying the WITH RECOMPILE option: 

ColdFusion Muse: Using the WITH RECOMPILE option in a Stored Procedure 



This tells SQL Server to throw away the existing query plan and build another one--but

ColdFusion Muse: Using the WITH RECOMPILE option in a Stored Procedure 



only this once. 

You can also add the WITH RECOMPILE directly to the stored procedure right before the
AS keyword. This tells SQL Server to throw out the query plan on every execution of
the sproc. 

There is also a third option. I could have created a separate sproc for each search
method, and then decide which one to execute within the CASE block. That way, the
query plan associated with the sub-sprocs remains in the cache, where SQL can take
advantage of them. Since each of the sprocs searched exactly one column, there is no
need to recompile. 

SQL Server's ability to optimize and compile a stored procedure is great but, if you
aren't careful, it can bite you when you least expect it. Now that you know how to deal
with the problem, perhaps there are a few situations in your own database that you
might want to revisit. 

Arthur Fuller has been developing database applications for more than 20 years. He
frequently works with Access ADPs, Microsoft SQL 2000, MySQL, and .NET. 

ColdFusion Muse: Using the WITH RECOMPILE option in a Stored Procedure 


