
UUID Magic With Java - When Speed is Critical
Posted At : January 13, 2011 2:32 PM | Posted By : Mark Kruger
Related Categories: ColdFusion

Note, this post is compiled from information foraged and provided generously by the
inestimable Brian Meloche who's ColdFusion skills are (quite obviously) legendary. The
Muse gives praise where praise is due - and with a nice dose of hyperbole to boot.

Many folks use UUID's for various reason. CF has a nice function built in that handles
UUID creation - createUUID(). Try it out - use <cfoutput>#createUUID()#</cfoutput>.
You should see a funky 36 character string that looks like this -
7C286425-CA3D-1B10-16A3CCD259C21FEE. If you are new to ColdFusion or
programming in general you might not realize what's special about the UUID. It is
guaranteed to be unique - at least within reason. There is a statistical probability that
a duplicate is possible, but your chance of finding one is about the same as being
kissed by Ann Paquin or being intellectually stimulated by the show "Jersey Shore". If
you want to know more about the uniqueness of UUID's check out this interesting (or
mind numbing - depending on your perspective) article on Wikipedia.

Just how would you use a UUID? There are a myriad of ways. You could store it as a
cookie to identify a "unique" visitor. You could use it to tie into your custom "roll your
own" session management. You could use it as part of a seed for encryption. But
probably the way most folks use it is as a primary key to the DB. Now I know that most
RDBMS systems include a built in UUID function. If you are planning on programming for
one DB (and there are often very good reasons to do so) then I recommend using the
built in function. It's typically faster to have your DB Server create something like a
UUID than passing a 36 character string to it via the JDBC driver. However, if you wish
your code to be portable then it's likely you will be creating your own UUIDs using
ColdFusion's built in functionality.

Slight Problem

If you are using a version of CF prior to version 9 then ColdFusion has a particular way
of generate UUIDs that is tied to the clock and MAC address. It is capable of generating
about 100 per second. There are times when that number might become a bottleneck
on a high traffic site. For example, if you are at the peak of your traffic with 700 or
800 concurrent connections and suddenly an aggressive bot starts crawling your site.
ColdFusion may not be able to quite keep up with that number of generated UUIDs
(assuming your Bots are generating UUIDs through you code somehow – logging,
sessions or whatever).

Fortunately there is a "JAVA" way to do UUIDs that is able to get around this issue.
Actually (quoting Brian) there are 5 "classes" of UUID in the java.util package. CF
Apparently uses a slower one of the 5 (presumably more compatible with disparate
environments or whatever). The following Java code uses a different one of those
classes. The code is pretty easy to figure out. In most cases you could simply drop this
code in to replace your createUUID() code:

<cfset uuid = createobject("java", "java.util.UUID") />
<cfset newUUID = uCase(removeChars(uuid.randomUUID().toString(), 24, 1)) />

ColdFusion Muse: UUID Magic With Java - When Speed is Critical

http://www.brianmeloche.com/blog/index.cfm
http://en.wikipedia.org/wiki/Universally_unique_identifier

Another Brian, Brian Ghidinelli, published this post where he tests the speed of
createUUID() against the Java code above and finds a nearly thousand times increase in
speed using the Java UUID code.

Meanwhile Brian Meloche wanted to verify that ColdFusion 9 improves the performance
of the original CreateUUID() so he ran the following test on both platforms:

Old:

<cfset timeIs = getTickCount()>
<cfloop from="1" to="1000" index="i">
 <cfset uuid = createUUID() />
</cfloop>
<cfset timeIs = getTickCount() - timeIs>

New:

<cfset timeIs = getTickCount()>
<cfloop from="1" to="1000" index="i">
 <cfset uuid = createobject("java", "java.util.UUID") />
 <cfset new = uCase(removeChars(uuid.randomUUID().toString(), 24, 1)) />
</cfloop>
<cfset timeIs = getTickCount() - timeIs>

What did he find? While ColdFusion 8 benefited tremendously from the Java version
with a 200 to 1000 times improvement, ColdFusion 9 saw only a modest 10 times
improvement. From this test I think we could reasonably conclude that using
ColdFusion 9 you are not likely to run into any problems with UUID bottlenecks
regardless of whether you use createUUID() or the Java version of the code.

ColdFusion Muse: UUID Magic With Java - When Speed is Critical

http://www.ghidinelli.com/2009/03/19/createuuid-vs-javautiluuid-performance

