ColdFusion Muse: IIS 7 Max Worker Processes and ColdFusion Updated

IIS 7 Max Worker Processes and ColdFusion Updated
Posted At : November 5, 2011 11:12 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Troubleshooting

In my on this topic | indicated that IIS 7 seemed to be a constraining
factor. That post lead to conversations with a couple of CF gurus (Charlie Arehart and
Russ Michaels) who clued me in to a number of additional settings. If you are truly
interested take the time to read the previous post and (especially) the comments
before you read this post. What bothered me was that the issue | discovered (a cap on
requests) can be affected by both IIS settings or JRUN settings (or both).

My conclusion is that the behavior | was trying to affect is actually the bug that Charlie
pointed out to me on Adobe’s site (found). Charlie rightly indicates that this issue
is under-recognized (I certainly had not run into yet). The behavior of this bug can be
affected (fixed or mitigated) by adjusting IIS as described in my previous post as well
as by using the Adobe-provided instructions. This lead to a bit of Muse
head-scratching. How do these various processes really work together? This post hopes
to clear that up (or at least add to our compendium of knowledge).

First, the short answer is that Charlie is right that the maxworkerthreads setting in the
jrun_iis7_wildcard.ini file will solve this problem. Starting with a default setting of 1
for "Maximum Worker Processes” in the 11S7 application pool settings and
uncommenting the maxworkerthreads and setting it to 50 (maxworkerthreads=50) or
any number at least as large as your simultaneous requests setting will remove the cap
of 25 maxworkerthreads just exactly as Charlie insisted. And | should know better than
to doubt our resident CF scholar :)

To answer the other question however the maxworkerthreads setting is clearly
multiplied by the 11S7 maximum worker processes setting. So when you play with these
settings keep in mind that setting the maxworkerthreads to say 50 in your
jrun_iis7_wildcard.ini file and then setting the maximum worker processes to 2 in the
[IS 7 application pool settings will result in ColdFusion potentially handling 100
requests concurrently (2 IIS worker processes times 50 max worker threads).

To prove this to myself | started with the following settings:

e IIS 7 Max Worker Processes = 1

e maxworkerthreads= 10 in jrun_iis7_wildcard.ini for my instance
e Simultaneous Requests = 32 in CF Admin.

e A single CF instance with a single site

Then | used my load test to put enough pressure on the server to max out the CF
request queue (this was a baseline | knew from previous testing). | expected to be
limited to 10 requests. Sure enough, as expected | capped out at 10 requests. Take
note of how this works. This particular limit is bound to the IIS worker process. It's
about the connector not the application engine. That means the requests queue in IS -
not in CF. In other words you will not see queued requests climbing in Fusion Reactor
or the CF monitor. But if you use perfmon you can see them queing in IIS.

With my test running and observing my "active requests” steady at 10 with excess
requests queuing in IIS and not in CF, | set the "max worker processes” to 2. My cap
bounced up to 20. Requests were still queuing in 1S (and not in CF). | bounced to 3 and
my cap held steady at 30. No CF queue yet (remember my simultaneous requests

http://www.coldfusionmuse.com/index.cfm/2011/11/4/iis7.constrain.simultaneous.requests
http://blogs.adobe.com/cfdoc/2009/12/iis_6_for_coldfusion_9_increasing_the_number_of_worker_threads.html

ColdFusion Muse: IIS 7 Max Worker Processes and ColdFusion Updated

setting is 32). When | bounced max worker processes to 4 however my "active requests”
made it to 32 but no further. Instead | now had a queue in ColdFusion of 8. With a
max worker process of 5 | got a queue of 10 to 12 (that was the limit of my test
tolerance).

Lessons Learned

Remember this default capping behavior is per connector not per instance. One of my
servers running in multi-server mode has 24 or 25 sites on it - each of them connected
to a specific instance with its own jrun_iis7_wildcard.ini file and its own application
pool. So the total number of potential requests handled by that instance is a multiple
of application pools x max worker processes x maxworkerthreads (or the default of 25
if that setting is commented out as it is by default).

To put it another way the overall number of connectors you are using against an
instance will multiply the number of potential concurrent requests forwarded to
ColdFusion. If you have a single instance with say 10 sites each with its own application
pool and each connected to the same ColdFusion instance, you will end up with 10
worker process threads and therefore 10 times 25 (if using the default) maximum
concurrent CF requests.

So shared servers with multiple sites might appear to not be affected by this bug. But
if you think about it they are affected. With the default settings no app pool can get
more than 25 requests active concurrently. That's a problem that could easily "hide" on
a shared server (especially a busy one).

Is this useful in some way? It occurs to me that on a shared server you could create a
sort of throttle behavior by adjusting these settings - limiting a specific site to only 10
concurrent requests sent to JRUN at a time. Let's say you have a particular site (a
batch instance for example) with a tendency to gobble up too many threads, but you
don't have enough resources on the server to give it its own instance. Instead you might
limit the amount of work that the particular instance can do on behalf of that site by
setting maxworkerthreads to some number (say 10) and max worker processes to 1.

Incidentally | do not object to having more than one "worker process” (w3wp.exe) in IIS
as long as you don't go crazy. Indeed, in 1IS7 each "site" is created with a new
application pool (unless you reuse them) and each application pool spawns its own
w3wp.exe process. These worker processes tend to have a small footprint overall and
using 2 or 3 instead of 1 is a fairly modest configuration change that might actually
improve your performance in some cases.

In any case it is interesting to see how these settings work together and | feel like
exploring this process has added some additional information to our growing arsenal.
Thanks to both and the inestimable for
poking at me on this and helping me figure out the relationships between these various
settings and processes.

http://www.michaels.me.uk/
http://www.carehart.org/

