ColdFusion Muse: Muse Review: Exploring CouchDB With Matt Woodward

Muse Review: Exploring CouchDB With Matt Woodward
Posted At : May 22, 2012 10:56 AM | Posted By : Mark Kruger
Related Categories: cfobjective

On Saturday | sat in on ColdFusion genius session on practical
couchDB. | have experience with both Memcached and MongoDB so | thought | was
prepared for the general sense of what you could do with CouchDB (which | had never
explored). | assumed it was just another "no SQL" database. But Matt demonstrated
some things that were new to me and | am intrigued enough to experiment with them
- hopefully engendering a few more "CouchDB" blog posts. Here's a couple pros and
cons gleaned from the presentation.

The Pros

For one thing it seems like (from the demo) that CouchDB's simple HTTP interface for
getting, putting and updating records is a natural fit for ColdFusion and CF
programmers. The storage engine uses Json (and really... who isn't using Json) which
makes it easy to work with fairly complex data types. For example, getting content
looks like this:

<!---MAK: get some user--->
<cfhttp url="#somedomain#:5984/dbname/keyOrGuid" meothod="GET" result="getUser" />
<!---MAK: turn him into a CF data object --->

<cfset getUser = deserializeJSON(getUser.filecontent)>

Other actions use the standard HTTP verbs (PUT, DELETE, POST etc). HTTP status
codes allow for traditional error handling. This seems conventional and easy to grasp.
If a "document” (an individual record) is not found you get a 404 error. Various views
and filters are possible by altering the URL or passing params in as a part of the
request. It's a straightforward model that "fits" what a typical ColdFusion programmer
already knows how to do - unlike MongoDB or Memcache which (while still easy)
require some java construction.

The most intriguing thoughts bouncing around in the Muse' head have to do with
performance. In its simplest form CouchDB is a listening HTTP port. Since it has
clustering and replication under the hood (this was not demonstrated but it was made
to sound easy :) you could easily cluster your content on multiple VMs or iron behind a
load balancer - making scaling with traditional load balancing a piece of cake and
eliminating the need for the application to use a teamed IP, know about failover,
handle primary/delegate relationships etc. Indeed scaling databases is a great deal
more challenging than scaling web servers, so having this capability should be a real
plus.

The Cons

Not that I'm completely sold. | still worry about the overhead associated with HTTP
requests. A cfhttp request is more expensive than a JDBC driver call and there's not
“connection pooling”. So the general connect and retrieve infrastructure is going to be
more expensive than traditional DBs - at least that's my theory. In addition, you have
to pull in the data as a string and deserialize it. Granted Json
serialization/deserialization is light weight but it's still one more step.

What would really be cool (listen up Railo and Adobe Folks) is to allow a CF admin to

http://blog.mattwoodward.com/

ColdFusion Muse: Muse Review: Exploring CouchDB With Matt Woodward

register CouchDB (or Mongo or whatever) as data-sources or pseudo datasources and
provide a function or tag to get the data back already deserialized. That would be a
true data enhancement that fits with the ease of the CF administrator. One of
ColdFusion’'s strengths is this sort of "pre-configured” resources that are easy to access
within the code. No SQL Dbs would be a natural extension of this | think. But back to
performance...

I'm often given a sort of glib response to granular performance concerns (like the
overhead associated with CFHTTP) by developers who say "how often do you really
need to worry about millisecond level performance? The truth is - quite often. One of
my CF Webtools roles these days is to dive into under-performing systems and try to
find ways to maximize output and speed. In many cases the goal is to get another
month or two out of existing hardware or design while a new approach can be devised.
In such cases everything is in play. Consequently, when designing a new system that is
intended to receive a lot of request traffic, it's important to make such decisions right
up front or pay the penalty later.

Still, for intermediate caching, shopping carts, sessions, aggregate portals and many
types of content CouchDB would be a huge step up from the hodge-podge of
approaches usually seen. | was impressed with its ease of use and responsiveness.

