
A Frank Discussion About Protection
Posted At : June 19, 2013 1:52 PM | Posted By : Mark Kruger
Related Categories: ColdFusion, Coldfusion Security 

I know it's an uncomfortable topic. I understand that you would like to keep your
validation private. You would probably rather learn about this from your friends at the
coffee shop, Jeremy who is two cubes down from you, or some guy on a forum
(shudder). Still, the Muse has an assignment in life to point these things out and make
sure you are well informed and prepared when temptation strikes. Oh I know what you
say now. I know what I'm doing. The risk factor is slight. I'm too small... I mean... my
application is too small to need it. But take it from me - you will need to understand
how to use protection or bad things will happen. So let's talk about it. 

The Risk Factor

Who's at risk? Simple, if you use form, cookie or URL variables you are at risk. And
honestly who doesn't use form, cookie and URL variables? To paraphrase Freud, "The
only abnormal user input is no user input." I know you think your users are safe, but it
only takes one successful injection attempt and you are infected. So it is important to
recognize that protection is always necessary in every case and should be a normal
part of your development life. The world is full of users who are less than competent -
not to mention bots and agents who will show up for one or two HTTP requests and
then leave without saying a word in the middle of the night (don't get me started!). So
no matter how innocent your application is and no matter how gently used - you still
need protection. 

What Is "Validation"

I could spend a lot of time talking about technique and how to communicate with your
users and if you should use this brand of protection or that - but enough with the
uncomfortable metaphors. The important thing to remember is that anything that
comes from the user should be validated on the server. Did I mention "on the server". I
would like to start a campaign to eradicate the use of "client side" and "security" in the
same sentence. You see it's not enough to add fancy jQuery validation libraries or any
other client side technology. Let me put it to you this way - there is no client side
technology that cannot be circumvented - usually by the youngest member of the high
school computer science club (probably even Jr. High). And there is nothing you can do
to prevent them from trying. Why? 

Why Client Side Validation is Useless for Security

Let's say you have a form on your web site. The form submits a shopping cart for final
processing. You have worked hard to obscure the inner workings of your form. You use
hidden form fields. You generally make your internal code look like a JavaScript
playground. Your amounts, taxes, quantities, CC information, contact information etc.
- all come with nice checks that tell the user useful things like "That is not a valid
email" or "The letter 'A' is not a quantity" or "MC Cheese Whiz is not an appropriate
name for a beneficiary." You have made a tremendous effort to insure that it works in
all browsers. By the time the form is actually posted to the server you are satisfied
that it contains what you want it to contain - right? Not exactly... 

You see the problem is that nothing prevents a user - a malicious user or even one who
is as dumb as a coal bucket - from tampering with your precious client side code. Using

ColdFusion Muse: A Frank Discussion About Protection 

http://www.charlesproxy.com


a proxy like Charles a novice user could trap all the form field names and values
posted to the server, dummy up a new form with those field names, and start posting
all sorts of bad data. Of course that's a lot of work. Some tools and plugins allow you to
simply manipulate form data directly prior to posting it - rewriting your JavaScript in
the process. There is no technology that exists on the client side that cannot be
tampered with. That's the essence of the client side. It is an environment over which
you have zero control. 

That's not to say that client side validation is useless. Quite to the contrary, the client
side is where the user experience can be enhanced tremendously through the use of
validation, feedback, automatic calculation, Ajax and the like. This is where jQuery
has really shined and emerged to become the de facto standard we all use. Can't figure
out how to organize a sortable table? Don't sweat it, jQuery has a plugin for that. Need
to insure that an email is valid for format? No problem, jQuery has a function just for
that purpose. Want to send out telepathic vibes into space calling for the invasion of
the Garbonzian horde? I'm not sure but I think jQuery can help with that - try googling
for the jQuery megalomaniacal telepathy plugin. 

Meanwhile, don't you dare start thinking that all this validation and UI hoopla has
anything to do with security. It does not make you more secure and indeed may lull
you into thinking you are more secure than you actually are? Some of the JS validation
actually keeps things like scanning engines and PCI compliance tools from throwing up
red flags. Sometimes automated parsers can't effectively parse through the JS
functions in your code to find a way to POST your data and even check for
vulnerabilities. So you may pass an automated scan test but in fact still be vulnerable.
I hope that keeps a few sys admins up at night - it should. Every month I am engaged
in reviewing code for applications where security is a must - and I'm finding more and
more vulnerabilities that are simply not obvious to automation but are easily
detectable by anyone who knows where to look. 

You don't believe me? How about a real world example I found on an ecommerce site?
Consider the following 3 form elements: 

Quantity: <input type="text" name="qty" value="5" id="qty"/>
<input type="hidden" value="11.40" name="taxes" id="tx"/>
<input type="hidden" value="156.35" name="grandTotal" id="gtot"/>

This developer was thorough. Ajax would send the quantity and SKU to the server
where it would return Json values for amount, taxes and grand total. The hidden fields
collected this information and some HTML was updated to display it to the user. Upon
submission an additional Ajax request was made to "double check" the amount against
the server values again. This second check was to prevent anyone from tampering with
the values (presumably) or updating the quantity without rerunning the "update"
function. If this last check is successfully performed the jQuery client submitted the
values to the server for processing via a POST request. 

Ok Muse readers, does anyone see the fatal flaw in this way of doing things? The
developer was clearly double checking everything right? By the time he submitted he
(or she) knew for sure the values were correct. He is even using the server for these
validation checks right? Actually if I simply disable the final post, change the values of
the quantity and grand total and post directly to the handler I can (or I could until I

ColdFusion Muse: A Frank Discussion About Protection 

http://www.charlesproxy.com


the quantity and grand total and post directly to the handler I can (or I could until I
fixed this issue) buy something in any quantity for any amount I wished. The final
handler code actually accepted the values, charged the CC and put the values into the
DB as is. Think about it. I can purchase 500.00 worth of items, then change the amount
to 1.00. Talk about a discount plan! I guess the real question is, why go through all
that server validation trouble with Ajax and then fail to run the same CFC functions on
the server prior to the final disposition of the data. Maybe that was on his to do list. 

The Take Away

So what do we surmise from this cautionary tale? First, the server side is where all
validation should take place. Everything else is just eye candy. Important eye candy to
be sure, but server side validation is the foundation of your security on any user form.
Secondly, server side validation should take place in a certain order. It should always
take place immediately before handling - before the final disposition - of the variables
submitted. And finally, server side validation must take place in the same HTTP
request as the code handling the values. You cannot validate via the server on request
A, then submit the values you have validated on request B. Both the server side
validation and the handling of the actual form variables need to be sequential within
the same request so that no interference by client side tampering is possible. 

Final Thoughts

If you are tempted to see this post as an indictment of jQuery, UI design, interactivity
or anything else "client side" please think again. These are all important things that
should be addressed. Indeed, when orienting toward the user or customer they become
primary items that should be carefully considered and programmed. I'm only arguing
that such things as client-side form validation belong in a different discussion than
security. Security - at least with regard to handling user input - happens only on the
server. The fact is that you simply have no control over the client, period. So
remember when you are tempted to think you have improved security by adding client
validation you still have some work to do :). As always I welcome comments - but
please add to our discussion and be civil and respectful. Thanks as always for reading. 

ColdFusion Muse: A Frank Discussion About Protection 


