
Using UNION in your queries
Posted At : July 25, 2005 11:24 AM | Posted By : Mark Kruger
Related Categories: SQL tips, MS SQL Server

Are you using Union queries yet? If not, you should get up to speed. A union query is an
extremely useful method for returning records from different tables in the same
recordset. You just have to remember that datatypes of the columns must match in the
same order they are referenced. Here's an example:

<cfquery name="myQry" datasource="#dsn#">
 SELECT ord_no, product,
 cost, shipping, status,
 OrdDt
 FROM Orders
 WHERE OrdDt Between '2005-07-18' AND '2005-07-19'
 UNION
 SELECT ord_no, product,
 cost, shipping, status,
 OrdDt
 FROM Orders_history
 WHERE OrdDt dateBetween '2005-07-18' AND '2005-07-19'
</cfquery>

In this example we have a system that holds unposted orders in the 'orders' table.
When they are posted they go from orders to the orders_history table. The union query
above gives me information about the orders placed between specific dates - whether
they were posted or not. There are a couple of gotchas. The order of the columns
must be of the same data type. That means the columns can be named differently.
They are only required to match for type. If the "shipping" column is "shipCost" in the
Orders_history table we could easily do the following.

SELECT ord_no, shipping
 UNION
 SELECT ord_no, shipCost

 The query would return results from both table and the first column specified
(shipping) would be the name of the new column - although for readability an alias
would be a better choice. Matching the type only and not the column name can make
debugging tricky. What if you accidentally switched around shipping and cost and they
were both decimal data types? You would end up with values reversed and your
numbers would be off. So take great care in constructing your union query. As a side
note, datatypes with "implicit" conversion (as in INT to decimal) will actually work -
further complicating the issue.

Ordering in a union query

A union query has to have it's "order by" clause exist in the last query specified. It may
not be in any other query in the group of queries. Sometimes you an do some clever
things with Union queries ordering to give you "groups" of records. For example, let's
say, in the query above, that I wanted to group by whether or not the record had been
posted or not. In other words, I wanted to order by whether or not the record came
from the "orders" table or the "orders_history" table. Obviously, the "status" field would
probably provide some help there, but let's say there were multiple possibilities and
ordering by "status" would give me more than the 2 groups I desire. Here's what I can

ColdFusion Muse: Using UNION in your queries

do.

<cfquery name="myQry" datasource="#dsn#">
 SELECT ord_no, product,
 cost, shipping, status,
 OrdDt, 1 AS sortOrder
 FROM Orders
 WHERE OrdDt Between '2005-07-18' AND '2005-07-19'
 UNION
 SELECT ord_no, product,
 cost, shipping, status,
 OrdDt, 2 AS sortOrder
 FROM Orders_history
 WHERE OrdDt dateBetween '2005-07-18' AND '2005-07-19'
 ORDER BY sortOrder
</cfquery>

Simple right? Add an int with the sort order you want and alias it as a column, then sort
by that field.

Aggregate Functions using union

Recently a question came up on CF Talk about using UNION to aggregate data from
more than 1 table. In other words, can I use my query to return a simple count of all
the records from both tables. You do a select COUNT(*) from a subquery to make this
happen.

<Cfquery name="myQuery" datasource="#dsn#">
SELECT count(*) FROM
 (
 SELECT ord_no
 FROM Orders
 WHERE OrdDt Between '2005-07-18' AND '2005-07-19'
 UNION ALL
 SELECT ord_no
 FROM Orders_history
 WHERE OrdDt dateBetween '2005-07-18' AND '2005-07-19'
) AS totalOrders
</CFQUERY>

 A couple of things to note. First, it's easy to forget, but you need the "AS" clause (the
alias) at the bottom of the query. Without it there is no "column" for CF to return to
you. Secondly the "UNION" operator now says "UNION ALL". Without UNION ALL the
UNION operator will automatically removed duplicates from the query - making it
unreliable as a count if the same order number exists in both tables. In the case of
orders vs. orders_history that's probably not possible, but in other cases it could be
very important. Thanks to SQL GURU Joe Rinehart and several others who fiddled with
this to get it to work. It could be very useful in certain cases.

ColdFusion Muse: Using UNION in your queries

http://www.houseoffusion.com

