
Accessing Both 64bit and 32bit Assemblies
Posted At : January 3, 2011 11:07 AM | Posted By : Mark Kruger
Related Categories: Coldfusion Troubleshooting 

Many readers will doubtless recall the war waged by the Muse against .NET on 64bit
ColdFusion 8. If not, you can read all about it in this series of posts on Muse Vs. .NET
Integration. It was clear from the outset that using 64bit CF against a 32bit assembly
was not working for us. Naturally we went down the path of recompiling everything
into 64bit and we had multiple obstacles to overcome. But the fact that we could not
communicate with 32bit assemblies always puzzled me. The communication (like most
things on a web server) happens through a socket to a listener provided by the
integration service (just like Verity and Sequelink). I could not reasonably explain to
my own satisfaction why it should be that a 32 bit assembly was inaccessible. After all,
our tests using the assembly directly worked fine. I assumed in a vague sort of way
that differences in how variables were stored and passed back and forth must be to
blame. 

A few weeks ago I got a tip from the always insightful Rick Root on CF-Talk - who
figured this out with the help of the folks at Just CF (SupportObjective). His problem
was different than mine. He had a mixed environment with both 32bit assemblies and
64bit assemblies. In his experimentation he discovered something that solves both our
problems. When you call and assembly (any assembly) using .NET integration
ColdFusion creates some jar files under the hood. You will find them in the
/cfclasses/dotnetproxy folder. Here's a sample folder where the server is using 2 .NET
assemblies:

Of course, one of the Jar files that ColdFusion creates is the actual assembly interface
which "mirrors" the methods and properties of the .NET interface. It's the one with the
cryptic name that looks like "-23480983_3023903.jar". The other file however is
special. It's the one that is always named dotNetCoreProxy.jar. It is compiled only
once (unless you delete it) on the first time you instantiate a .NET assembly. It
provides (presumably) the interface to the proxy listener. 

The Fix

Now here's the kicker. If the first assembly you call is a 32bit assembly - in other
words, if you call the 32bit framework first - then this little jar file is compiled to
access the 32 bit framework and cannot access the 64bit framework. In fact, there's

ColdFusion Muse: Accessing Both 64bit and 32bit Assemblies 

http://www.coldfusionmuse.com/index.cfm/2010/11/9/muse.vs.net.integration.part.3
http://www.coldfusionmuse.com/index.cfm/2010/11/9/muse.vs.net.integration.part.3
http://www.rickroot.com/
http://www.justcf.com


some good evidence that it can't reliably access 32bit DLLs either (it seems error
prone). However, if you access a 64bit assembly first then the jar file is compiled in
such a way as to be able to access both the 64bit and 32bit frameworks. 

Conclusion

To avoid having to run this gauntlet I would suggest accessing a .NET Assembly on the
64 bit framework first and backing up the subsequent dotNetCoreProxy.jar file to avoid
future confusion. I'm sure you can find a nice "Hello World" assembly to compile to
64bit. If you have legacy .NET integration code and you are moving from 32bit to 64bit
then it will likely not work out of the box until you have done this (or it may work
once or twice and then give you inscrutable errors). You will need to get the correct
dotNetCoreProxy.jar file compiled (the 64bit version) before you can access your 32 bit
assembly dlls successfully and reliably. The good news is that you don't necessarily
need to recompile all your assemblies to use the 64bit CLR - although there may be a
performance or compatibility reason to do so. 

ColdFusion Muse: Accessing Both 64bit and 32bit Assemblies 


