ColdFusion Muse: Handling Unicode Data types in MS SQL

Handling Unicode Data types in MS SQL
Posted At : July 6, 2006 10:28 PM | Posted By : Mark Kruger
Related Categories: MS SQL Server

We have a customer who wants to support Asian languages. They have a lightweight
CMS tool that they use to update portions of their website. Our first task was to
duplicate this functionality for each language supported. Our first hurdle was the
Chinese character set. We could update the DB directly through cut and paste, but the
CF code we were using resulted in inscrutable question marks. We were using
CFQUERYPARAM and none of the character types we tried worked. It looked as if we
were up against a great wall.

Reaching back into the distant past | remembered something | had discovered years
ago. While using the script generator to build a "create” script for a database | noticed
that the "DROP" commands all looked like this:

<cfquery>
if exists
(select * from dbo.sysobjects

where id =
object id(N'[dbo].[FK architectural feature doors architectural features]')
and OBJECTPROPERTY (id, N'IsForeignKey') =1

)
...Drop constraint....
</cfquery>

| had wondered why all the table and constraint definitions (character variables in the
code above) had a big N in front of them. | discovered that an N keeps the DB server
from applying a code page. In other words, it allows the characters to be treated "as
is" instead of trying to format them. In reality it stands for "Native Language” - and
forces the server to not treat it as any particular language. Of course you still need to
be using double byte data types (ntext, nvarChar nchar instead of text, varchar and
char). Here's a blurb from MS books on line about it.

MS Books Online RE: Constants

Unicode strings

Unicode strings have a format similar to character strings but are preceded by an N
identifier (N stands for National Language in the SQL-92 standard). The N prefix
must be uppercase. For example, '‘Michél' is a character constant while N'Michél' is a
Unicode constant. Unicode constants are interpreted as Unicode data, and are not
evaluated using a code page. Unicode constants do have a collation, which
primarily controls comparisons and case sensitivity. Unicode constants are assigned
the default collation of the current database, unless the COLLATE clause is used to
specify a collation. Unicode data is stored using two bytes per character, as
opposed to one byte per character for character data. For more information, see
Using Unicode Data.

