ColdFusion Muse: SQL Injection Part III - Don't Forget Sorting

SQL Injection Part lll - Don't Forget Sorting
Posted At : July 21, 2008 12:53 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Security

So... you have diligently added CFQUERYPARAM to every input variable. Your database
is secure and safe from SQL Injection - right? Well... maybe not. Did you remember to
account for the ORDER BY Clause? Let me explain.

Let's suppose we have created a simple search and drill down. Searching gives us back
a record set which we present in a tabular format - like so:

|User | Email | City
Dick |archiesfriend@aol.com Allentown
Bob [Bob@cubandisco.com Springfield
Harry [Mommasboy@myspace.com [Toledo

This is ok, but sometimes when there are 60 or 70 results we wish to make them
sortable. Perhaps we don't want to use client side sorting for this so we decide to
simply re-run the query with a different sort order. We choose to do the following:

First, we change the header for each of the items to include a link to the results and a
URL variable for order - something likes this.

<th>

User
</th>

Next, in our query code we add something like this.

<cfparam name="url.orderby" default="C.city"/>

<cfquery>
SELECT U.User, U.Email
C.City
FROM Users U JOIN contact C
ON U.user id = C.user id
WHERE U.email LIKE

(<cfqueryparam cfsqgltype="CF_ SQL CHAR" value="$#form.eml#%"/>)
ORDER BY #url.orderBy#
</cfquery>

Simple right? Actually, we have just opened up a gaping hole in our DB. Someone could
easily pass something like:

?orderby=C.city; truncate table contact

We can't use CFQUERYPARAM on an ORDER BY clause - so how do we solve this problem

(short of moving all of our ordering to the client side). Here are two possible
approaches.

Fix 1 - Validate

The simplest way to do this is to simply make sure that URL.orderby matches a list of
potential strings:

ColdFusion Muse: SQL Injection Part III - Don't Forget Sorting

<cfparam name="url.orderby" default="C.city"/>
<cfset oList = "U.User,U.Email,C.City"/>
<cfquery>
SELECT U.User, U.Email
C.City
FROM Users U JOIN contact C
ON U.user id = C.user id
WHERE U.email LIKE
(<cfqueryparam cfsqgltype="CF_SQL CHAR" value="%#form.eml#%"/>)
<cfif listfindnocase (oList,url.orderby)>
ORDER BY #url.orderBy#
</cfif>
</cfquery>

This is fine if we are writing our application out of whole cloth - but what if we are
repairing legacy code and we want to secure it as fast as possible? We don't have time
to go and look up every column name in the DB and create lists. Here's a trick to try
that serves as a nice work around.

Fix2-QofaQ

The real danger of Injection is that a malicious user can change the contents of the
DB. We can, however, use Q of a Q to take the process of ordering out of the picture
altogether.

<cfparam name="url.orderby" default="city"/>
<cfquery name="test" datasource="blah">

SELECT U.User, U.Email
C.City
FROM Users U JOIN contact C
ON U.user id = C.user id
WHERE U.email LIKE
(<cfqueryparam cfsqgltype="CF_SQL CHAR" value="S%#form.eml#%"/>)
</cfquery>
<!--- now order it --->

<cfquery name="test" dbtype="query">

SELECT *

FROM test

ORDER BY #Url.Orderby#
</cfquery>

See what | mean? No live data was harmed in the making of this ORDER BY clause.

Of course we will need good error trapping to insure that malicious attempts (which
will now generate CF errors rather than JDBC errors) are caught.

One more note on this second approach. We might consider using it anyway if we are
heavily caching data. If the sample DB query above is cached for, say an hour, and a
user clicks on all three columns to re-order it using the first approach we will end up
with three separate cached queries - identical save for ordering. If, however, we are
using the second approach, we will have 1 cached query that is simply reordered in
memory for each sort request. For some applications this is an excellent choice -
especially if they are heavily used and DB resources are scarce.

