
Muse Vs. .NET Integration - Part 3 a New Frontier
Posted At : November 9, 2010 11:47 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Troubleshooting

As we continue our saga against the evil empire our intrepid Jedi, Master Muse, has a
new chapter of knowledge to share. So with this post I'm adding a few things you may
need to know to work with .NET integration on ColdFusion - in this case ColdFusion
8.01 enterprise in "multi-server" mode. Before I continue it might behoove you to read
my previous post on Muse vs. .NET integration Part I and Muse Vs. .NET Integration
Part 2. These 2 previous posts provide a blow-by-blow description of issues faced and
resolved to get this running. My father used to say "behoove" so I pulled it out of the
attic to use here. It means "It might be in your interest" but as a child I always thought
it had to do with goats or fauns or something - but I digress.

Here is the latest information we have uncovered in our never ending quest to get
.NET integration working smoothly on ColdFusion 8 64bit. Many thanks to fellow guru
and very large brained friend Guy Rish for his tireless efforts to uncover some of these
items. I'd also like to thank Dennis N for his part, a brilliant engineer in his own right
who has kept at this with us till we solve it or die trying. I'd mention his last name but
I don't have his permission :) Meanwhile......

What in the Ham Sandwich is Going On Down There

Let's pause and take a moment to contemplate how this all works. On one side there is
a bridge "listener" that is hooked up to the .NET Framework. This Listener takes the
form of the .NET Integration service (the binary is JNBDotNetSide.exe). If you poke
around in a few config files you will see that this process actually listens on port 6805.
On the Coldfusion side the "createobject()" function connects to the framework
through this listener and passes the class and assembly file name. It then creates a
proxy jar file - much like it would do for a web service I suppose. On multi-server this
jar file is typically located in \JRun4\servers***instance
name****\cfusion.ear\cfusion.war\WEB-INF\cfclasses\dotNetProxy. If you call a .NET
object and then take a look at this folder, you will see a fresh new jar file created.
You will also see a jar file called "dotnetproxy.jar". This jar file is (presumably) the
Java classes needed to communicate with our .NET listener as well as (again
presumably) some reflection classes to introspect and tease out an assemblies various
properties and methods.

One of the things we discovered is that it is sometimes necessary to clear this folder
out - particularly when you have a new DLL you are trying to instantiate but it has the
same signatures and class name(s) as the old one.

Side Trail to "Signature" Explanation

And while we are at it, that word "signature" is a good one to learn while you are
absorbing .NET Integration. You see, .NET is like most other compiled languages in that
each method can have more than one "signature". For example, if you wrote the
following ColdFusion code in the same script:

<cffunction name="getUser" ...>
 <cfargument name="userID" type="numeric"../>
</cffunction>

ColdFusion Muse: Muse Vs. .NET Integration - Part 3 a New Frontier

http://www.coldfusionmuse.com/index.cfm/2010/10/19/Coldfusion-NET-Integration-64bit
http://www.coldfusionmuse.com/index.cfm/2010/10/19/Coldfusion-NET-Integration-64bit-Part-2
http://www.coldfusionmuse.com/index.cfm/2010/10/19/Coldfusion-NET-Integration-64bit-Part-2

<cffunction name="getUser" ...>
 <cfargument name="lastname" type="string"../>
</cffunction>

ColdFusion would immediately error out and complain that you cannot have 2
functions identically named in the same template. But in .NET (or other compiled
languages) these 2 functions could happily coexist - one as "getUser(string)" and the
other as "getUser(int)". In compiled languages the method name plus the return type
plus the argument names and argument types make up the functions "signature". Why
is this important? Because using .NET integration you will likely have to match the
signature of the method you are calling. Let's say the .NET method needs the following:

 addUser(
 string,
 string,
 string,
 boolean,
 int,
 string,
 date,
 string,
 double)

If you pass the wrong number of arguments, get the arguments out of order, or miss an
argument altogether you might expect an error like "Hey - you forgot argument X"....
but that's not what you will get. Instead you will likely get an error like "No method
found with that signature". For example, let's say you tried this:
<cfscript>
 AddUser('mel','Torme','A','true',85,68154,'6/6/1942',2000.00);
</cfscript>

It looks ok but there might be 2 things possibly wrong. Can you see them? First, the
Boolean in position 4 is actually being passed as if it were a string with quotes around
it. Secondly, the item in position 6 (supposed to be a string) which looks like a zip
code is being passed as a numeric value (no quotes). In a ColdFusion function call this
would likely pass muster. CF would convert the number to a string and the string to a
Boolean. Or, perhaps, CF would throw an error like "argument blah must be a
Boolean". But in .NET you will get the "no method found with that signature" error
instead - which might leave you scratching your head.

In other words, .NET will not call the method and simply "pass" whatever you throw at
it. Instead the method you call has to match the arguments precisely by type. And
.NET is not going to give you extra clues either. You will have to eyeball your signature
Vs. the one expected by .NET. Here's a tip. If you can get the assembly instantiated
dump it out:

<!--- instantiate --->
 <cfset obj = createObject(".NET","someclass","#pathtocache#/blah.dll")/>
 <!--- dump the object --->
 <cfdump var="#obj#"/>

You will get a list of distinct method/signatures. Make sure your call to the .NET
method matches a signature in the dump. If you get a mismatch error try "JavaCasting"
all the non-strings into the appropriate java type. It takes some trial and error but it's

ColdFusion Muse: Muse Vs. .NET Integration - Part 3 a New Frontier

all the non-strings into the appropriate java type. It takes some trial and error but it's
doable.

Back to Clearing the Cache

I'll explain why it's necessary to clear the cache in a moment, but let's talk about the
"how". If you try to delete these little jar files you will get a complaint that they are
locked - and indeed they are, by the .NET integration service. To delete them you will
need to stop the integration service, delete the jar files (remember to leave the
dotnetproxy.jar file in place) and restart the service.

But Why? Why are you Taking our Jar Files Santy Claus?

Sit down here on my knee Cindy Lu and I'll tell ya. You see it all started with the need
to support 2 different dlls with the same class names. In our case we had site A - that
used the "current" implementation of our .NET dll. We also had site B - which desired
to use the latest and greatest release of our dll. Each of these sites used the same CFC
to make the .net calls. Being geniuses we naturally had a fool-proof plan. We put
together something like this:

<cfscript>
 IF(site IS 'A')
 createobject('.NET',"mainclass","c:\prod.dll");
 else if(Site IS 'B')
 createobject(".NET","mainclass","c:\beta.dll");
</cfscript>

Simple right? If we are on Site A we instantiate "prod.dll" and if we are on site B we
instantiate "beta.dll". Each of these dlls has the same methods attached to a class
called "mainclass". Some of you might be ahead of me already. Remember that our
.NET assembly is compiled into that jar file in the /dotNetProxy folder. And jar files
work as a collection of classes bundled together. You put a jar file in the class path
and the JVM "knows" about the classes contained within it. If you follow the logic here
you will see that one class is going to be instantiated and a jar file built with a class at
*.cfclasses.dotnetproxy.mainclass. But when site B comes along it's going to build it's
own jar file with, guess what, the same class name -
*.cfclasses.dotnetproxy.mainclass. So one of these classes is going to overwrite the
other in the class path and be the only one available to use.

Conclusions

One very obvious conclusion is that you cannot use 2 versions of the same class - the
same limitation you have with Java. If 2 classes have exactly the same path and dotted
notation, one is going to "win out" and the other will not be usable. And that, dear
readers, is why we had to "clear the cache". In point of fact we kept overwriting one
class with another and back again till we figured out what we should have seen from
the beginning - there was only room for one class of that name in dotnetproxy. Why
didn't we see it sooner? That's an instance question. The cache and class path are
specific to the instance. In our tests we had logically used an instance that was NOT
the production instance. In other words we had an instance at
\JRun4\servers\ProdInstance\.... and another at \JRun4\servers\TestInstance.... - 2
JVMs, 2 Class paths, 2 cfclasses/dotnetproxy folders, and no conflict. We only saw the
issue when we tried to run the 2 classes simultaneously on the same instance.

Go Easy

ColdFusion Muse: Muse Vs. .NET Integration - Part 3 a New Frontier

Now perhaps some smug reader might say "well sure... everyone knows that". I admit
in hindsight it seems obvious (sort of), but it was hard to get our heads around the fact
that we could instantiate 2 different file names and not have separate classes. Once
we figured that out (and slapped our foreheads repeatedly - Guy has a permanent hand
print there) it was much easier to conceptualize and draw conclusions. But as you
know, the Muse enjoys helpful and insightful comments, so fire away.

ColdFusion Muse: Muse Vs. .NET Integration - Part 3 a New Frontier

