
ColdFusion and JVM Versions and SSLv3-TLS Security Magic
Posted At : December 8, 2014 2:52 PM | Posted By : Mark Kruger
Related Categories: ColdFusion, Coldfusion Security 

This is the second entry by Wil Genovese (Trunkful.com) in our effort to provide a
complete picture of how CF, Various versions of JVMs and various versions of SSL all
work together. Wil's previous article on Surviving Poodle detailed a blow by blow
description of how to troubleshoot a system broken due to the upgrading of SSL. This
article includes some detailed technical information as well as the results of some
painstaking tests. It is our hope that it will serve as a guide. It represents yet another
reason to insure that you are upgrading to the latest JVM and CF version. Take it away
Wil: 

Wil writes...

We've all been taking steps lately to protect our computers and servers from the
POODLE flaw in SSLv3. At CF Webtools we've been updating our servers in various
hosting facilities to prevent the use of plain old SSLv3. As a reminder, there is base
SSLv3, and SSLv3 plus TLS1.x. More about that later. Perhaps you never think about it,
but as a ColdFusion developer you make frequent use SSL via various ColdFusion tags or
cfscript. For example, CFHTTP lets you access a remote server (such as a web service)
with a URL via ColdFusion server and it most often uses SSL in the process. 

POODLE and ColdFusion

In case you missed why this is a trending topic (and why security folks like myself and
the Muse are so riled up about it), here is a quick refresher as to what POODLE is
according to US-CERT: 

"All systems and applications utilizing the Secure Socket Layer (SSL) 3.0 with
cipher-block chaining (CBC) mode ciphers may be vulnerable. However, the
POODLE (Padding Oracle On Downgraded Legacy Encryption) attack
demonstrates this vulnerability using web browsers and web servers, which
is one of the most likely exploitation scenarios. " 

"This affects most current browsers and websites, but also includes any
software that either references a vulnerable SSL/TLS library (e.g.
OpenSSL) or implements the SSL/TLS protocol suite itself." 

In our case think of ColdFusion using CFHTTP to access a remote server over SSL.
ColdFusion becomes the browser. Communications to the remote server (if vulnerable)
could be compromised via Man in the Middle attack. This type of attack combined
with the POODLE attack could lead to information exposer such as passwords or other
authentication tokens that could then let an attacker access additional systems. 

ColdFusion CFHTTP Under the Hood

How does ColdFusion create an HTTP request? CF uses an Apache Java class called 
HttpClient under the hood to do actual CFHTTP calls. The specific version was
upgraded to Apache HttpClient 4.3.3 for ColdFusion 11. I found this information in the
notes from a bug report I created for ColdFusion 10. ColdFusion 8, 9 and 10 all use an
older version of this library so there is a notable difference in behaviors. The basic rule
is that the older version of HttpClient does not appear to allow SSL fallback to older

ColdFusion Muse: ColdFusion and JVM Versions and SSLv3-TLS Security Magic 

http://www.trunkful.com
http://www.coldfusionmuse.com/index.cfm/2014/11/24/coldfusion-tsl-ssl3-JVM-1-7
https://www.us-cert.gov/ncas/alerts/TA14-290A
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://bugbase.adobe.com/index.cfm?event=bug&id=3598342


SSL versions. Here's how I developed this data: 

Testing Methodology

To test for each possible case scenarios I used this simple code:

<cfhttp url="https://accounts.google.com/ServiceLogin" method="GET" port="443">
<cfdump var="#cfhttp#">

And tested it against the following ColdFusion versions (and yes, at CF Webtools we
run and maintain all of these versions for various customers):

ColdFusion 8.0.1 Fully Patched
ColdFusion 9.0.2 - fresh unpachted install
ColdFusion 10 Fully Patched
ColdFusion 11 Update 3 (Prerelease)
Java 1.6.0_04
Java 1.6.0_45
Java 1.7.0_71
Java 1.8.0_25

From my research I am finding that Java 1.6 is only capable of SSLv3 and TLS1.0 this is
based on this article at Oracle. The table below comes from that article. 

I setup each ColdFusion instance to use one of the specified Java versions for each
round of testing. To verify the type of connection that was being made I used
WireShark to intercept all network traffic and filtered for "ssl.handshake". This filter in
Wireshark shows the exact handshake protocol that is used for the SSL connection.
Here's a sample of wireshark output: 

Based on the Oracle article noted above I used this Java arg in the jvm.config
-Dhttps.protocols. This argument is supposed to specify the version of SSL/TLS allowed
by Java. It can be used with any of the following values singly or in a comma separated
list like so: 

ColdFusion Muse: ColdFusion and JVM Versions and SSLv3-TLS Security Magic 

https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https


-Dhttps.protocols=TLSv1.1,TLSv1

The possible values are: 

SSLv3
TLSv1
TLSv1.1
TLSv1.2

According the the chart above only certain SSL protocols are available for each
different Java version. The table below shows my results of each test for each Java
version vs ColdFusion Version vs the Java argument that I used for the test. The value
in the chart indicates the results of the test based on the captured request data in
WireShark. 

ColdFusion 8.0.1 ColdFusion 9.0.1 ColdFusion 10 ColdFusion 11

Java 1.6.0_04
SSLv3

TLSv1.0 TLSv1.0

Java 1.6.0_45
SSLv3

TLSv1.0 TLSv1.0 TLSv1.0

Java 1.6.0_45
TLSv1

TLSv1.0 TLSv1.0 TLSv1.0

Java 1.6.0_45
TLSv1, SSLv3

TLSv1.0 TLSv1.0 TLSv1.0

Java 1.7.0_71
SSLv3 Only

TLSv1.0 TLSv1.0 SSLv3

Java 1.7.0_71
TLSv1

TLSv1.0 TLSv1.0 TLSv1.0

Java 1.7.0_71
TLSv1, SSLv3 

TLSv1.0 TLSv1.0 TLSv1.0

Java 1.7.0_71
TLSv1.2,TLSv1.1,TLSv1 

TLSv1.0 TLSv1.0 TLSv1.2

ColdFusion Muse: ColdFusion and JVM Versions and SSLv3-TLS Security Magic 



Java 1.7.0_71
TLSv1.2,TLSv1.1

TLSv1.0 TLSv1.0 TLSv1.2

Java 1.8.0_25
SSLv3

TLSv1.2 TLSv1.2 SSLv3

Java 1.8.0_25
TLSv1

TLSv1.2 TLSv1.2 TLSv1.0

Java 1.8.0_25
TLSv1, SSLv3

TLSv1.2 TLSv1.2 TLSv1.0

Java 1.8.0_25
TLSv1.2,TLSv1.1,TLSv1

TLSv1.2 TLSv1.2 TLSv1.2

Findings

The most important finding is that no matter which value that I used for the 
-Dhttps.protocols argument with ColdFusion 8, 9 or 10 the resulting protocol that was
used is the default protocol for that version of Java. In other words, for CF 8-10 this
setting has no effect. Java 1.6 and 1.7 the default protocol is TLSv1.0 and I never
could force CFHTTP to make a handshake with SSLv3. For Java 1.7 I never could get a
higher protocol than TLSv1.0 to be used. For Java 1.8 the default protocol is TLSv1.2
and all attempts resulted in the SSL handshake using TLSv1.2 - again this is for
ColdFusion 8 through 10. 

ColdFusion 11 is where this story changes. CF 11 uses the newer Apache HttpClient.
Consequently each result reflected the value of the -Dhttps.protocols argument. In
cases where multiple protocols were given the highest possible protocol was used. 

Conclusions

I think the following argument, -Dhttps.protocols=TLSv1.2,TLSv1.1,TLSv1, should be
used to prevent SSL fallback to SSLv3 for ColdFusion 11. The older versions of
ColdFusion do not need this argument because the default value for the given Java
version is always used and that is never base SSLv3 (although interestingly you can
force the use of base SSLv3 in CF 11 using the argument). The only caveat here is that
Adobe may eventually update ColdFusion 10 with the newer Apache HttpClient. It is
something we will certainly be pressing them to do. If they do then it will most likely
be advisable to use the same argument settings for ColdFusion 10 in the future. 

Interesting Side Note

Did you happen to notice the chart that I did get ColdFusion 9.0.2 to run on Java 1.8?
That's interesting. I have not seen any notice from Adobe about there being an update
for ColdFusion 9.0.2 to run on Java 1.8. I would not recommend trying this in
production without extensive testing, but it's an interesting finding. 

Muse Writes...

ColdFusion Muse: ColdFusion and JVM Versions and SSLv3-TLS Security Magic 



Thanks Wil! I know our readers will find this information incredibly valuable. If you are
like me dear reader you tend to bookmark posts like this and return to them again and
again as you stumble on to different environments. As always we welcome your
comments and contributions to our compendium of knowledge. 

ColdFusion Muse: ColdFusion and JVM Versions and SSLv3-TLS Security Magic 


