
Estimating Part 2: Quality, Quantity and Visual Blinders
Posted At : August 17, 2009 3:33 PM | Posted By : Mark Kruger
Related Categories: Business Of Development

In our first post on this topic, Red Lobster Eyes With a Happy Meal Wallet, we began
the discussion of the difficulty involved in estimating projects for startup companies.
We took the time to chat about the nature of the bright people with big ideas who
choose to try something new on the Internet. Our main point was that Big Idea people
often underestimate the time and money it takes to complete a project. Today we will
talk about one of the principle pitfalls that arise in reaction to lack of resources.

Trading Quantity for Quality

That a start-up company is underfunded is not news to anyone. Having started a
business myself I'm well aware that most of the time a start-up owner is doing what he
is able to do, not what he wants to do. When a big idea person comes to me with a list
of features I know I will be tasked with helping this customer see the possibilities while
keeping his feet on the ground. My first goal is to create a list of the core features that
are essential to the site's success. I suggest to the customer that he (or she) put his
money into making these core features rock solid, thoroughly QA'ed, scalable and
extendible.

Sometimes this results in a great application with foundational code that becomes the
bedrock of all future development on the product (let's hope anyway). Often however,
the customer focuses intently on trying to squeeze more features out of the budget. In
other words, cutting quality in favor of quantity. In fact this is a somewhat natural
outgrowth of my next point. Most big idea people really see the totality of their
project or product as a set of features - not as a "system" with lots of interlocking
parts. The customer's true understanding of the project centers around the "screens"
that you build for him or her. This is pretty obvious when you think about it. Consider
for a moment that the customer will probably never see most of the code you write for
the project. Instead, he or she will interact with the system in the way you designed,
using the screens or applications or widgets that are built for customer interaction.

The "Visual" Blinders

Because of this screen-centric view the customer may have extreme difficulty
understanding how development time breaks down. This is important to you as well as
the customer. When you present them with an invoice for $4,000 or $5,000 for a single
feature they will have some questions about what they are getting for that amount of
money.

Let's take a simple messaging system as an example. A short description of our system
is as follows:

Allow an admin user to create a message that is sent via email and/or SMS to all
users, a single user, active users, inactive users or users in a particular group. The
message should also be displayed on the home page when the user logs in.

Given that explanation, here is what the customer sees.

A form to send out messages.
A formatted email template.

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

http://www.coldfusionmuse.com/index.cfm/2009/8/12/working.with.startup.companies

A new area of the member home page with a message in it.

The thing to note here is that each of these is a visual item. The customer does not
see a diagram of web servers, data, SMTP, SMS etc. They see what they will be using.
They have a sort of tunnel vision that boils everything down to what they see on the
page.

We as developers might see the following tasks or hurdles:

The need to alter the signup and profile pages to collect the users Cell number
(for SMS).
The need to implement an SMS gateway.
The need to log/audit process in case it is necessary to resend due to a technical
difficulty.
The need to estimate the total number of potential messages for a global send. If
the customer has 25 thousand users for example, we probably don't want to send
all 25k into the spool at once (especially on a shared server). So we might need
"plan B". This will apply if the customer even expects to have that many in the
near future as well. Obviously we don't want to create something that works now
but fails in six months.
In the "send messages" form we will need some queries for things like status,
group and individual users.
We might possibly need search interface for selecting users. This is especially
true if the number of users ranges into the thousands. We can't have them all in a
single drop down right? We will need a way to tease out individual users to meet
our requirements.
We will need to display the message on the home page, but the messages that
display there will depend on the user login. We will need a query that filters the
messages so that they apply to the users status and group as well as individual
and global.
We will need to check on things like SPF and domain keys to make sure these
messages can get through appropriately.

The thing to note here is that only a few of the things that concern the developer are
visual. A developer sees systems, workflows and technical hurdles while the customer
sees only the visual aspects of this task.

Now a messaging system like the one described is a common feature. Sure there are
few unknowns, but it is the sort of thing we ColdFusion developers do over and over
again for various suites of applications. So I have a good idea of exactly what such a
feature might cost. The problem is that even though I might be very sure of my
numbers, when I tell the customer it will take 30 hours (just as an example - there are
no real requirements here so please no comments!) he might go away scratching his
head. "30 hours? For a simple form and an email?"

Why the disconnect? Largely it is because of perspective. A customer with no IT
background simply does not have the points of reference to digest the whole
enchilada. Additionally, Big Idea people often come from sales and marketing - folks
who live for visual media. They might be the only people left in the world who still like
Flash splash screens and banner ads. They are simply not wired to see the system as
more than the items they can touch and handle. Moreover, it is difficult for them to
grasp that working out the system and workflow and data interactions is more time
consuming than creating the forms and templates. In fact, such customers may spend a

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

dozen iterations tweaking the labels on the form, or asking for modifications in font
sizes or styles. The same customer might never ask about speed, fault tolerance,
scalability, extendibility etc.

How to Educate the Customer

Given the nature of how customers often see an application, it is important that we as
developers work hard to expose the customer to the whole picture. This does not mean
that the customer must be educated as to the nuances of DB indexing or why ORM is
the way to go, or why jQuery is better choice than YUI. It also does not include
high-handed, condescending technical jargon that is designed to awe and impress. It
means that the customer needs to be exposed to some of the inner workings of
developers. He or she doesn't need to fully grasp everything that is going on. But it is
reassuring to be exposed to some of the complexity of the work.

Its Nice to be Included

 When I was a younger man I enjoyed working
on cars. I purchased a number of cars before I went to college. I would buy a fixer
upper, make repairs and body work, get a cheap Earl Sheib paint job, and then resell it
for (hopefully) a profit. These days when I open the hood of a car and poke around,
but I don't really see a lot of things I recognize from working on my 1972 Oldsmobile 98
like the one pictured her - with its Rocket 350 V8 engine. Add some fading, a few
dents, and a blue driver side door to this pic and you have the car I drove through all
my years of college. Ahh... happy memories. I'm also old enough to not want to bother
poking around under the hood of my car any more. So I tend to let the guys at the shop
do all the work these days.

Still, when I go to the garage I do enjoy a full explanation. Maybe I just enjoy
hobnobbing with folks who are not afraid of grease under their finger nails. One
purpose of such chats is to reassure myself that the technician is competent as well as
to understand as much as possible the work to be done. If a technician provides a
thorough explanation I am more sanguine about the repairs, even if I don't fully
understand it. On the other hand if he is condescending or impatient with his
explanation, my confidence tends to diminish (indeed I might even become a problem
customer).

The same phenomenon is at work in IT projects as well - perhaps even more so. In
fact, I believe that one of the things that is poorly perceived across the board in IT
projects is the importance of communication to stakeholders. I really think that
developers and project managers put insufficient value on the task of making sure the
customer feels good about the project. If you are one of the folks who just said to
yourself "What?? What does it matter how he 'feels' about the project??" ... listen up.

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

I'm talking to you.

You need the support of the stakeholders to succeed. Many projects fail because they
lose steam largely due to discouragement on the part of customers. Project
stakeholders need reassurance and they need confidence in you and your team. Finding
ways to build confidence can mean the success or failure of the project. It is far from
a mere "politicking" task. It is an essential part of communication with your customer.
Some customers might pop the hood enough to say "Yep, that's quite an engine" and
others might enquire as to the purpose of "that little thingy there" - but all of them
need attentive, patient communication so that they are fully aware of the tasks at
hand. This communication should exist whether the customer is Laissez-faire or not.

Our Approach

When estimating it is important to take the time to describe your tasks and
requirements in a way the customer will understand - or at least sense. Descriptive
requirements are important. Such requirements are not just written to satisfy the
development team. They are also written (you might want to write this down) to
provide substance to the tasks involved so that the customer can be reassured and
informed as to the complexity of a project or feature . In other words, good
requirements help justify the hours and cost. They are a customer relationship and
sales tool as well as a development tool.

Every company or developer is different but here is what we do at CF Webtools. We
have created a collaborative project system that we use to track all hours and tasks
associated with a particular project. As developers have questions or finish items on
the list they use this system to add notes to individual tasks. These notes are sent to
the project team and to the customer in individual or digest form. Hours are tracked
along with the tasks so the customer knows how much time is being used and can
compare it with the estimate. The idea is not only to keep the customer involved in
the process (which is an important aspect of creating acceptable deliverables), but
also to demonstrate the pace and complexity of the work. It helps educate the
customer about the scope of the work beyond just the visual aspects.

Sample Project Binder Screen

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

Of course some customers use the system effectively and appreciate the level of
detail, and others rarely log in. But even those who do not log in see the notification
emails and often respond via email (which is shuttled to the assigned team) with
questions and comments of their own. In this way the customers see what is going on.
It's not perfect and we are enhancing, revising and rethinking all the time - but it is
working well for most of our customers.

Developers Need Knowledge Too

Finally, I don't want to leave the topic of communication without taking the time to
address the knowledge gap that runs in the other direction - between the customer and
developer. Many developers do not take adequate time to understand the customer's
business. When a new customer comes to you your first task is to understand the
business they are in. It is not to figure out how many bleeding edge technologies you
can pitch them because you like to shop in the toy store. Your new manufacturer
probably doesn't need a SIM game, or a 3D flex visualization of ordering trends, or a
social networking site for assembly line workers. As we use to say in Sunday School,
"Stop, Look and Listen". Take an interest in the business. Be curious. Step out of your
box in the same way you want him to step out of his. In the past year I have learned
new things about:

Large scale farming
Option trade signals
Retail standards for markup
FDA rules for Pet medications
How charter jet flights are booked
How travel agents work
Marketing PGA tournaments
The upscale jewelry market
Vacation house rentals
High school athletic programming

...as well as dozens of other items both trivial and substantial. I learned all these
things through conversations with customers about projects proposed or underway. Of

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

course not everyone is wired this way. Part of what motivates me the acquisition of
knowledge and (more importantly) wisdom. But it doesn't take an (ahem) genius to
understand that the more you know about a customer's business the more likely it is
that you will meet his expectations.

Conclusions

I hope this post has brought out a few basic truths. Quality can be a more cost
effective way to spend project money than quantity. Customers need your
communication efforts even with very technical details. And you as a developer also
have a box that deserves to be stepped out of on occasion. In our final post in this
series we will discuss how to account for the "hidden costs" associated with estimating.

ColdFusion Muse: Estimating Part 2: Quality, Quantity and Visual Blinders

