
Troubleshooting a Leaky Heap in Your JVM
Posted At : February 12, 2008 1:19 PM | Posted By : Mark Kruger
Related Categories: Coldfusion 8, Coldfusion Troubleshooting

The phrase "memory leak" can cause shivers to run down the spine of the most
seasoned developer. Having some process on your server that is gloaming onto memory
and failing to release it is a guaranteed all nighter lurking somewhere in your future.
Recently we were debugging a new, soon to be released application. We discovered
what looked like a memory leak. The JVM memory used would climb steadily toward
the maximum heap size. When the runtime garbage collection kicked in it would
reduce the memory only by about a third of the increase. So, for example, memory use
would climb from 300 megs to 600 megs and then GC would reduce usage back to 500
megs and so on. This situation would inevitably lock up the server with out of memory
errors. What follows is a recap of our troubleshooting journey.

Stop Gap Measure: System GC

While CF Guru Mike Klostermeyer examined the code that was most commonly in play,
I was tasked with examining the Java Settings. The first thing I did was fiddle with
manually firing garbage collection. One set of code I found looked like this:

<cfset runtime.gc()>

<cfdump var="#runtime.freememory()#">

 <!--- run GC --->
 <cfset runtime.gc()>
<cfdump var="#runtime.freememory()#">

This code ran the GC with exactly the same behavior as before - giving back some
memory, but with no baseline. However, the "free memory" method turned out to be
useful in another way. I created a CF page with the following code:
<Cfset runtime = CreateObject("java","java.lang.Runtime").getRuntime()>

<cfset fm = runtime.freememory()/>

<Cfset fm = int((fm/1024)/1024)/>

<cfset usedmem = 1270-fm/>
<cfoutput>

Free: #fm# megs

Used: #usedmem# megs

</cfoutput>

This was quick view of where memory usage was at on the server. Meanwhile back to
my problem.

I decided to try a "system" garbage collection. As I understand it, the runtime GC is a
suggestion, but the system GC is a "stop the world" command. I whipped up the
following code:

<cfset obj = createObject("java","java.lang.System")/>

 <cfset obj.gc()/>

 <cfset obj.runFinalization()/>

ColdFusion Muse: Troubleshooting a Leaky Heap in Your JVM

This worked really well. It took about 1 to 1.5 seconds to run and Memory usage on the
heap dropped down to a floor of about 25% each time I ran this code. I combined it
with some of my "free memory" code and scheduled a task that ran the system GC
whenever memory reached 1 gigabyte of usage. This solved our stability problems but
it was not optimal. We knew we still had a leak somewhere. When discussing the
situation with some folks on one of my email lists it was suggested that the speed of
the system GC was a good clue. The system GC seemed to be able to get back quite a
bit of memory very fast. It must be because there are many de-referenced objects on
the "old generation" part of the heap.

Now in case you missed it in school or on Entertainment Tonight, Java divides the heap
into "new" generation space and "old" (tenured) generation space. Without boring you
with copious details, objects are always created on the "new" generation space on the
theory that most objects live a very short time. For example, when you create a
variable in the local scope it survives until the request ends and then it can be safely
deleted from the heap. So the vast majority of variables and objects in any code base
survive only a short time and live their entire life in the hurky jurky world of the "new"
generation. Objects that are intended to live beyond a single request (like application
and session variables) get a buyout and are moved to the "old" generation space.

A lot of the oddly named Java switches that we play with in the Jvm.config file have
to do with allocating memory or collecting memory on the "old" or the "new" heap
space. For example, -XX:+UseParNewGC specifies to the JVM which GC to use for
cleaning up the new space. Anyway, the theory in our case was that the runaway
memory allocation was occurring in "tenured" (old) memory. Mike and I began to work
with the scopes that we considered candidates for "old" memory - application, server
and session scoped objects and variables. After a day Mike finally found this snippet of
code.

<cfif isDefined("#tmpString#")>
 <Cfset snapData =
 session.data["#arguments.params.uniqueID#"]>
<cfelse>
<Cfif isDefined("session.data")>
<Cfset structClear(session.data)>
</CFIF>
<cfset snapData =
 application.ChartDataObj.getSnapshotData(symbol=arguments.params.symbol)>
<cfset session.data["#arguments.params.uniqueID#"] = snapData>
</cfif>

The purpose of this code is to retrieve a Real time stock quote in order to append the
value to one of 12 or 13 studies and charts. Because we didn't want to get the quote
12 times in a row we are storing the quote in the session and then we accessing it
from the subsequent (Nearly simultaneous) requests. The "application.ChartDataObj" is
a collection of methods with no properties attached. So the code above either pulls
the data directly from the session, or creates it directly and references it in the
session. In either case the goal of this code block is to create the "snapData" variable
(an array) for use later on in the function. The variable "snapData" is correctly vared at
the top of the function.

When mike removed all of this code and replaced it with just:

<cfset snapData =

ColdFusion Muse: Troubleshooting a Leaky Heap in Your JVM

<cfset snapData =
 application.ChartDataObj.getSnapshotData(symbol=arguments.params.symbol)>

Our memory problems disappeared. Yes, memory still climbed steadily, but the regular
GC operations of the JVM took care of recovering the memory as expected. Now we
had a problem. We needed some way of caching this data. We still needed to
overcome the necessity to hit our quote server 12 times in a row for the same
information. What could we do? The answer was to deep copy the return var from the
function using duplicate. Yes, I know it sounds simple but after 2 days of
troubleshooting this is what actually solved our problem:
<cfif isDefined("#tmpString#")>
 <Cfset snapData =
 session.data["#arguments.params.uniqueID#"]>
<cfelse>
<Cfif isDefined("session.data")>
<Cfset structClear(session.data)>
</CFIF>
<cfset snapData =

 duplicate(application.ChartDataObj.getSnapshotData(symbol=arguments.params.symbol))>
<cfset session.data["#arguments.params.uniqueID#"] = snapData>
</cfif>

This code caused the data returned by the application object to be copied by value
into the session instead of by reference. When we implemented this code, our memory
climb shallowed out noticeably and the regular runtime GC was able to bring it back
down to the floor of 25% at regular intervals of an hour or so.

Rule of Thumb

What can be gleaned from this exercise? Well at least one "rule of thumb" for us is to
carefully consider how we handle objects that are cached in persistent scopes. To boil
it down to a single rule it would be "Avoid referencing returned objects from one
persistent scope to another and copy by value instead".

Final JVM Arguments

In case you wanted a rundown of our final JVM arguments arrived at through trial and
error - we found the following to work well in our environment (Your environment may
be quite different):

java.args=-server -Xmx1280m -Xms1280m -Dsun.io.useCanonCaches=false -XX:PermSize=64m
-XX:+UseConcMarkSweepGC -XX:NewSize=48m -XX:SurvivorRatio=4 -XX:+UseParNewGC
-XX:MaxPermSize=192m

We are also indebted (as always) to the many fine gurus who help out cheerily on the
email lists to which we subscribe. The following blog posts on Java and Coldfusion
deserve honorable mention:

Pete Freitag - GC Tuning
Robi Sen - JVM Options
Daryl Banttari - CMS Collector

We are also indebted to the new server monitor in Coldfusion 8 and to the old tried
and true SeeFusion application that provides excellent introspection into the inner
works of the JVM.

ColdFusion Muse: Troubleshooting a Leaky Heap in Your JVM

http://www.petefreitag.com/articles/gctuning/
http://www.therobisen.com/blog/
http://www.webapper.net/index.cfm/2006/6/8/20060606021131
http://www.seefusion.com

ColdFusion Muse: Troubleshooting a Leaky Heap in Your JVM

