
BlueDragon 7 - Coldfusion's Little Sister is Growing Up
Posted At : February 28, 2007 12:51 PM | Posted By : Mark Kruger
Related Categories: Coldfusion's Future, Product Reviews

You probably already know about BlueDragon. It's a fine ap server from the folks over
at New Atlanta (the makers of Jturbo and ServletExec). BlueDragon is an interpretive
engine for CFML that is a direct competitor to Coldfusion. Last night I was privileged to
see a presentations by Josh Adams from New Atlanta at the Nebraska CFUG on the
upcoming release of Blue Dragon 7. I have always thought that one of the knocks on
BlueDragon is that BD is forced to play "catch up". The folks at New Atlanta have to
wait and see what features appear in Coldfusion and then hurry to implement them in
the next version of BD. I was pleasantly pleased and surprised to see that the next
version of BlueDragon may force Adobe to play a bit of catch up on their own. It has a
number of quite innovative features and I was duly impressed. Here are some of the
more impressive things I saw or heard about.

Thread Management

A request can spawn worker threads for asynchronous work. The request can "fire and
forget" these threads or "rejoin" them (wait for each of them to finish). In the example
that Josh used a call to a web service was done 4 times serially at a cost of around
1000 milliseconds (1 second). He then modified the code to create 3 threads and made
each call to the webservice asynchronous to the request thread. It looked something
like this:

<cfthread name="a">
 <cfreturn wsCall.getData("somevar")/>
 </cfthread>
 <cfthread name="b">
 <cfreturn wsCall.getData("somevar")/>
 </cfthread>
 <cfthread name="c">
 <cfreturn wsCall.getData("somevar")/>
 </cfthread>
 <!--- let the request thread do some
 work as well
 --->
 <cfset d = wscall.getData("somevar")/>
 <cfscript>
 /* joinThread() makes the request wait
 for the specified thread to finish.
 Cfjoin is the tag aquivelent
 */
 joinThread(a);
 joinThread(b);
 joinThread(c);
 </cfscript>

 <cfoutput>
 #a.returnvariable.rs.column#
 #b.returnvariable.rs.column#
 #c.returnvariable.rs.column#
 </cfoutput>

In the example, I'm imagining that the wsCall returns a query. A special
"returnvariable" provides an entry point into data that is created by the Cfreturn call.

ColdFusion Muse: BlueDragon 7 - Coldfusion's Little Sister is Growing Up

http://www.newatlanta.com
http://www.necfug.com/

It's complicated but the results were impressive. The web service process went from
more than 1000 milliseconds to around 300 to 400 milliseconds.

Of course you can also use cfthread to fire off worker threads and allow the request to
proceed. One possible use of it that might not be evident at first is to avoid double
submits. Sometimes the reason that double submits occurs is that the user becomes
impatient with the length of time the request is taking. Using CFTHREAD you could
offload the time consuming data processes to a separate thread and take the use right
to feedback - much like a gateway or message queue. I have an upload tool that does a
data import from an excel file that could greatly benefit from such an approach.

Cfquery "Background" Attribute

This is really just a specialized use of threads for handling database interactions. If you
set Background="true" in your cfquery tag the server will spawn a separate worker
thread for that database call and allow the rest of the request to continue. The
example that Josh gave us was a logging routine that ran in the onRequestEnd()
function in application.cfc. The logging function inserted some Cgi params into the
database as a tracking tool for users of the site. Such routines are pretty common
(Farcry has such a routine enabled by default). Setting background to true allowed this
query to run "in the background" and queue up with other such queries without
impacting the request - very cool.

Cfquery "CacheUntilchanged" (.NET and MSSSQL)

A nice feature of the .NET version of BD allows you to add the "cacheUntilChanged"
attribute to a query (not sure if I spelled that correctly). This attribute works
exclusively with MSSQL. If data changes on the DB Server the cache handler is notified
that the cache needs to be expired. The next request for that data results in a call to
the DB. Using this method you could ensure that queries are run only when they are
necessary. That is very cool.

onMissingTemplate() Function in Application.cfc

Josh briefly showed us this tag in the application.cfc template. it allows you to take
specific actions if the page requested is not found.

Conclusions

Overall I'd say that BD deserves another look. I was most intrigued that Josh indicated
a new pricing structure may be coming for BD.NET more along the lines of the
"standard" version. I understand they are trying to cater to the enterprise market but
in my opinion the CPU pricing for BD.NET is too high of an entry point - especially with
CF enterprise in the same space. According to Josh they will be offering a version of
BD.NET that is more akin to their JX pricing. I think that is a move in the right
direction. It is nice to see a product that competes with Coldfusion on it's own turf and
seems poised for new success. Congradulations to New Atlanta for an outstanding
effort.

ColdFusion Muse: BlueDragon 7 - Coldfusion's Little Sister is Growing Up

