
CFHTTP, IIS 8 and Server Name Indication (SNI)
Posted At : July 22, 2013 12:35 PM | Posted By : Mark Kruger
Related Categories: Coldfusion Troubleshooting 

Guest Post by Wil Genovese

(Muse Introduction)
Most readers know that the Muse is deeply indebted to a large and talented group of
developers working here at CF Webtools. These folks solve problems and undertake
Herculean programming tasks on a daily basis. They are constantly making me look
good and I would not be able to play golf or spend the day wise-cracking in IM and
tormenting my assistant Melissa without them on my side. Among these folks is one of
my favorite characters, CF guru Wil Genovese. Wil has worked with us for a few years
now and he writes an excellent blog at Trunkful.com. If you have not already done so,
you should add it to your list of must read blogs. 

Meanwhile, a few days ago Wil was trying to troubleshoot a head scratching issue with
CFHTTTP and SSL. Now such issues almost always come down to getting the
certificates properly installed in the keystore, using the correct URL (correct in all
respects for the certificate), name resolution and SSL protocol levels (as in "do you
need to lower Java's draconian SSL defaults to allow for less secure protocol"). After
beating his head against the wall repeatedly Wil finally decided the issue was on the
other end - the certificate on the server was somehow wrong, misconfigured or
behaving unexpectedly. I thought this was dubious at best, but as is so often is the
case the Muse was wrong and Wil found out (with apologies to Monty Python)
something completely different. It turns out a new feature in IIS 8 (Windows Server
2012) was the culprit. Since this setting affects all Java versions prior to 1.7 and even
affects CF 10 on Java 1.7, you should probably pay attention. My guess is that you will
run into this issue eventually - given the ubiquity of IIS and the coming upgrades to
Windows server 2012. 

Anyway, I invited Wil to write the following entry detailing his findings. If you want to
know more read on: 

(Wil writes)
Here's the scoop. We were working on setting up payment processing using ColdFusion
8.0.1 (yes, I know it's ancient but the client is planning to upgrade to CF10 soonish) and
it needed to communicate with a client's .NET server via secure CFHTTP (meaning over
SSL). The problem was that SSL communications were failing. The error (below) was 
I/O Exception: peer not authenticated. 

ColdFusion Muse: CFHTTP, IIS 8 and Server Name Indication (SNI) 

http://www.trunkful.com
http://www.trunkful.com


For several hours we tried everything from importing the SSL certificate into the
keystore to creating a separate keystore and including it in the jvm.config arguments.
We checked name resolution and tried different Java versions. The issue persisted
even after upgrading the JVM to 1.6.0_45. We even tested from ColdFusion 9.0.1 and
ColdFusion 10u9 running on Java 1.6.0_29 and nothing was working. Usually we can
resolve SSL issues in short order. This issue, however, was beginning to seem like
something on the targeted .NET server was preventing SSL communications - except for
one nagging fact. When using a web browser on the CF server we could access the
payment gateway web service url via SSL with no problem. So SSL was working and all
tests indicated that the SSL certificate was installed correctly. What could be the
problem?

After discussing the issue a bit more with them and explaining our dilemma the
customer decided to grant us access to their payment gateway .NET server. As soon as
I logged on I began to get some clues. The server was running Windows Server 2012
and IIS 8. Both are new to me, but with the dogged determination that is the hallmark
of a CF Webtool's developer (actually the Muse added that last part... but I was
definitely determined) I set out to learn something new. After getting used to the new
UI I found a setting for SSL in IIS that I've never seen before; Use Server Name
Indication (SNI). What the heck is SNI? In addition, instead of the IIS site having the SSL
Cert specifically assigned to it, the setting was set to use the Centralized Certificate
Store. Again what is this? 

ColdFusion Muse: CFHTTP, IIS 8 and Server Name Indication (SNI) 



(Host names are redacted) 

A few Google searches later I learned that Server Name Indication (SNI) is the HTTPS
equivalent of Name Virtual Hosts for HTTP. Wow! Remember back in the day (well the
Muse and I do anyway) when there was a one to one relationship between IP addresses
and websites. Web servers couldn't serve more than one web site from a single IP. But
the addition of the "host header" setting to the HTTP protocol allowed the web server
to "figure out" what site to use to serve up content - allowing for fewer IP addresses to
be needed for the grand World Wide Web experiment. SNI does the same thing for SSL
certificates. Up until now you needed a one to one relationship between IP addresses
and certificates - one IP to one standard certificate (we'll leave wild cards for another
post). But now, SSL will no longer need a dedicated IP address per certificate. So
multiple certificates combined with multiple host headers can serve secure content
from a single IP address. If you want to dig deeper (and I'm still digging myself) here's
the wiki page for Server Name Indication. 

Granted the SNI protocol has been a part of TLS for a while, but it has only become
practical recently. Indeed, it's only in IIS 8 that Microsoft made it available. Leveraging
SNI, MS also created Centralized Certificate Store - a neat new feature that allows you
to create a central location for Certificates that all of the servers in a cluster can
access. Thus, implementing or updating a certificate for a groups of servers is
(theoretically) a simple process of updating a single Centralized Certificate Store. I
won't go into the details of SNI and CCS - mainly because I am still learning them
myself - but let's talk about how this affects ColdFusion and CFHTTP over SSL. 

(Muse writes)
Before Wil goes further I wanted to interject a thought on how TLS (SSL) handshakes
work. On the client side - a browser or some agent like CFHTTP - TLS sends a request
to an IP address. As part of the handshake the server responds with 2 items - a
certificate and the name of the server (the FQDN as in www.example.com, that goes
with the cert). The client then examines the name and determines if it matches the
desired URL it is asking for. If it does not match then the client can do a variety of
things. It can warn you for example. Ever get that little message about "some things on
the page being insecure" or the message telling you the certificate is bogus and asking
if you want to proceed? That's often TLS (SSL) doing it's job matching the domain string
to the cert that has been proffered and (of course) verifying the certificate itself. 

ColdFusion Muse: CFHTTP, IIS 8 and Server Name Indication (SNI) 

http://en.wikipedia.org/wiki/Server_Name_Indication


But it's also why a one to one relationship between IP and certificate has always
existed. Think about it carefully - in order to match the certificate the server provides
the certificate and name to the client and the client determines what to do with it.
The server has no access to the "host header". That host header is buried in the HTTP
request and the server can't "see" that information until after the handshake. All the
server knows is that it's getting an SSL request to an IP and it has a cert bound to that
IP. What has to change in order for the server to pick and choose from among more
than one certificate? It has to know in advance what domain string (what FQDN) the
client is requesting. And that's exactly the problem the SNI extension solves. SNI
requires that the server string be sent along with the initial request for an SSL
connection. Instead of saying "give me SSL for IP 1.2.3.4" the client now says "give me
SSL for www.example.com". Now let's let Wil finish shall we? 

(Wil writes)
One of the gotchas is that the client/browser needs to be able to use SNI. It's an
extension of the TLS protocol so the client needs to be able to be able to use TLS. Most
but not all clients/browsers are compatible. While Java can use TLS (also sometimes
referenced as SSL 3.0 - see this Muse Post for a good explanation of TLS), it's only
since Java 1.7 that Java can use TLS with the SNI extension. This gotcha prevents
ColdFusion, while running on Java 1.6 and older, from working with SSL via CFHTTP
when the server being targeted is configured for SNI. In fact ColdFusion 8 will never
work with SNI as it can only run on Java 1.6 and older. ColdFusion 9 and ColdFusion 10
at least have a chance because both are capable of running on Java 1.7. 

To follow through and give complete info for this blog post I upgraded a couple of my
dev work stations for further testing. Flash forward and after doing multiple updates
and testing there is still no joy. After updating ColdFusion 10 to update 11 and
configuring it to run on Java 1.7.0_25 I gave the code another try. I re-enabled SNI on
the target IIS 8 installation. As I feared ColdFusion 10 could not communicate with the
remote server over SSL. Disabling SNI allowed CFHTTP to work again. There is probably
no point in testing a CF9 server though we do have a couple CF9 servers running on
Java 1.7 at CF Webtools. 

In my view this could be an increasingly critical issue as more servers throughout the
Internet are upgraded to Windows 2012 and IIS 8. ColdFusion is routinely used to make
remote calls to other servers over SSL and it obviously needs to be updated to use this
new standard. I suspect, given its convenience and implications, that many Windows
server administrators will want to leverage this feature. As for our customer he is fine
with not using SNI for the time being. His server is dedicated to this one task with only
one domain hosted. Meanwhile I entered a bug in adobe's bug database at this URL.
Please don't hesitate to vote it up. 

Is there a "Fall Back" for SNI if a browser does not support it? Unfortunately not. But
there is a work around for IIS 8 that requires you to setup a second site that does not
have SNI enabled. In other words you have one site that handles SNI through the central
repository and another site that works "the old way" and is bound to an individual IP
address. Of course this appears to negate the whole point of SNI. 

(The Muse writes)
Thanks to Wil for this excellent write-up and for his legwork tracking down the issue
and resolution. I think we should invite him to write more in the near future. If you are
a regular reader you probably know what I'm going to say next. This post references
Microsoft Windows. That's not an invitation for you to tell us why Apache is better or

ColdFusion Muse: CFHTTP, IIS 8 and Server Name Indication (SNI) 

http://www.coldfusionmuse.com/index.cfm/2009/2/24/CF-SSL30-Authorize-net
https://bugbase.adobe.com/index.cfm?event=bug&id=3598342


to castigate all the thousands of sys admins who use Windows and like it. On the other
hand the Muse welcomes constructive comments on topic so feel free to chime in and
add to our knowledge base. 

ColdFusion Muse: CFHTTP, IIS 8 and Server Name Indication (SNI) 


