
Breaking Up with Lists - When you are Ready for a Real Relationship
Posted At : December 7, 2005 11:55 AM | Posted By : Mark Kruger
Related Categories: Coldfusion & Databases

Every blue moon someone asks, "How do I determine if a list contains a value using
SQL?" This question belies a misunderstanding of how a relational database is supposed
to work. You can get at a value in a list using a UDF (see this previous post). But just
because something can be done does not mean that it should be done.

Why Use Lists

In your application Code lists are great. That doesn't mean they are appropriate in
every case. In fact you should avoid lists in favor of structures or arrays whenever the
data you are manipulating is variable character data (where the delimiter could be in
play) or the size of the data pool is very large. Using a list of 10 or 12 (or even 50)
static hex values might be ok, but using it to track all the possible hex values in a color
wheel is probably not a good idea. Using it for a list of presidents names will work
fine, but using it for the entire genealogy of FDR back to Adam is a bad idea.

In the database, however, lists are not so good. A database doesn't have all those nice
easy to grasp functions like "listfind()", "listgetat()" and "listfirst()" to work with. Sure,
you can create those functions using SQL UDF's, but when you do you are pouring
ketchup on a filet mignon. You see, when it comes to lists your database is ready for a
relationship. Now those of you with commitment anxiety take a deep breathe - we are
talking about database design here. Suppress your flight instinct or pretend you are in
Vegas and stay with me.

Databases and Relationships

To a database a list is really a relationship to a separate set of data. You can easily
handle the idea of a list using database relationships - and it's not that hard. The first
task that awaits you is to figure out what your list represents. Let's take an example
that's pretty easy to grasp - user and group permissions. In fact, I've seen a few
examples of code that use a list of Ids or strings to indicate the "groups" to which a
user belongs. Let's say you are user "sam" and you have the following list:
"Admin,Reports,Manager,Maintenance". This list is stored in the database in a column
called "groups". Before you can use a certain application (let's say a report) the
application code checks to see if you are in the "reports" group by doing something
like:

<cfif listfindnocase(userQuery.groups,"reports")>
 access to a link or application....
 </cfif>

 That works just dandy - what's wrong with it? Well, for one thing, the group
permissions are only accessible at the application level. They are not accessible at the
database level - at least not without a bunch of SQL gymnastics. For example, what if
you had a manager application where the data displayed depended on the group to
which the user belonged? You would either have to "pre-process" the groups and pass
them into your query as strings, or you would have to do something with an SQL UDF.
But if you were using relational tables you would be able to do joins or sub queries or
views that leveraged the power of SQL and provided results back to the application
code that were pre-filtered.

ColdFusion Muse: Breaking Up with Lists - When you are Ready for a Real Relationship

http://mkruger.cfwebtools.com/index.cfm?mode=entry&entry=87616A7F-D611-F201-A72DB4B567CFA1F7

Onother problem with this approach is that it is "one way". I have to start with the user
and check the group. What happens when I want to start with the group and see a list
of users? My options become pretty limited. I could do the UDF work-around, or I might
select all the users and filter them out when looping through them by checking the
list, but neither option is ideal.

Playing Dr. Phil

How many psychologists does it take to change a list? Only 1 - but the list has to really
want to change. Taking a list based approach and moving it to a database schema
takes some thought. The first thing to determine is the type of relationships you wish
to support. There are 3 main types, one to one, one to many and many to many. The
main question is, are either the users or groups exclusive. In other words, can any
number of users belong to any number of groups. If the answer is "yes" then you are
dealing with a "many to many" relationship.

Matchmaking

Now that I know the that I'm working with a "many to many" situation, what's next?
Let's finish off our example. First, let's assume you have a user_id in the user table as
the primary key - and a "group_id" as the primary key in the group table. What is
needed a third table, a cross reference table (a so-called "bridge" table), that contains
rows of user id's and group ids let's call it "cfx_usergroup". You can then query all sorts
of group permissions by joining or manipulating the 3 tables together. For example.

<cfquery name="checkAdmin" datasource="#dsn#">
 SELECT U.user_id, u.userName, g.group_id, g.groupName
 FROM user U JOIN cfx_usergroup cf
 ON U.user_id = cf.user_id
 JOIN groups g
 ON g.group_id = cf.group_id
 WHERE u.user_id = 484
 AND g.GroupName = 'Admin'
</cfquery>

But why? Why would you want this code when you could have just
"listfind(groupList,'Admin')"? Because it's extensible. You can now tie other types of
things in the database schema to permissions. You can create views of data that are
filtered by user based on which groups to which they belong. You can add groups and
entities more easily without reengineering your code. You can even create downstream
behavior without altering user permissions. Your design can also more easily be
represented as a database schema with the relationships.

Some Caveats

I know I know ... you inherited the list system and now you have to work with it.
Sometimes this is the case. The SQL UDF approach can be helpful in this case, but
clearly it is a work around. It is not good database design to store things in lists in
character columns that are going to be treated like individual data bits and filtered
accordingly. Where your application calls for a database relationship you should use
one. If the existing database is wrong, then you should recommend as the first option
that it be changed, and you should make it clear that work arounds save money only
in the short term. In the long run they always generate more work arounds.

ColdFusion Muse: Breaking Up with Lists - When you are Ready for a Real Relationship

